Skip to main content Accessibility help
×
Home

Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants

  • Iris Gigleux (a1), David J. A. Jenkins (a2), Cyril W. C. Kendall (a2), Augustine Marchie (a2), Dorothea A. Faulkner (a2), Julia M. W. Wong (a2), Russell de Souza (a2), Azadeh Emam (a2), Tina L. Parker (a2), Elke A. Trautwein (a3), Karen G. Lapsley (a4), Philip W. Connelly (a5) and Benoît Lamarche (a1)...

Abstract

The effect of diet v. statins on LDL particle size as a risk factor for CVD has not been examined. We compared, in the same subjects, the impact of a dietary portfolio of cholesterol-lowering foods and a statin on LDL size electrophoretic characteristics. Thirty-four hyperlipidaemic subjects completed three 1-month treatments as outpatients in random order: a very-low saturated fat diet (control); the same diet with 20 mg lovastatin; a dietary portfolio high in plant sterols (1 g/4200 kJ), soya proteins (21·4 g/4200 kJ), soluble fibres (9·8 g/4200 kJ) and almonds (14 g/4200 kJ). LDL electrophoretic characteristics were measured by non-denaturing polyacrylamide gradient gel electrophoresis of fasting plasma at 0, 2 and 4 weeks of each treatment. The reductions in plasma LDL-cholesterol levels with the dietary portfolio and with statins were comparable and were largely attributable to reductions in the estimated concentration of cholesterol within the smallest subclass of LDL (portfolio − 0·69 (se 0·10) mmol/l, statin − 0·99 (se 0·10) mmol/l). These were significantly greater (P < 0·01) than changes observed after the control diet ( − 0·17 (se 0·08) mmol/l). Finally, baseline C-reactive protein levels were a significant predictor of the LDL size responsiveness to the dietary portfolio but not to the other treatments. The dietary portfolio, like the statin treatment, had only minor effects on several features of the LDL size phenotype, but the pronounced reduction in cholesterol levels within the small LDL fraction may provide additional cardiovascular benefit over the traditional low-fat diet of National Cholesterol Education Program Step II.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Benoît Lamarche, fax (418) 656 5877, email Benoit.Lamarche@inaf.ulaval.ca

References

Hide All
1Krauss, RM & Burke, DJ (1982) Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 23, 97104.
2Lamarche, B, Tchernof, A, Moorjani, S, Cantin, B, Dagenais, GR, Lupien, PJ & Despres, JP (1997) Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 95, 6975.
3St Pierre, AC, Ruel, IL, Cantin, B, Dagenais, GR, Bernard, PM, Despres, JP & Lamarche, B (2001) Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation 104, 22952299.
4Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 13831389.
5Anon, MRC/BHF (2002) Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 722.
6Grundy, SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 319, 2433.
7Zhao, SP, Hollaar, L, ’t Hooft, FM, Smelt, AH, Gevers, JA & van der Leuven, LA (1991) Effect of simvastatin on the apparent size of LDL particles in patients with type IIB hyperlipoproteinemia. Clin Chim Acta 203, 109117.
8Yuan, JN, Tsai, MY, Hegland, J & Hunninghake, DB (1991) Effects of fluvastatin (XU 62-320), an HMG-CoA reductase inhibitor, on the distribution and composition of low density lipoprotein subspecies in humans. Atherosclerosis 87, 147157.
9Forster, LF, Stewart, G, Bedford, D, Stewart, JP, Rogers, E, Shepherd, J, Packard, CJ & Caslake, MJ (2002) Influence of atorvastatin and simvastatin on apolipoprotein B metabolism in moderate combined hyperlipidemic subjects with low VLDL and LDL fractional clearance rates. Atherosclerosis 164, 129145.
10Guerin, M, Egger, P, Soudant, C, Le Goff, W, van Tol, A, Dupuis, R & Chapman, MJ (2002) Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Atherosclerosis 163, 287296.
11Marz, W, Scharnagl, H, Abletshauser, C, Hoffmann, MM, Berg, A, Keul, J, Wieland, H & Baumstark, MW (2001) Fluvastatin lowers atherogenic dense low-density lipoproteins in postmenopausal women with the atherogenic lipoprotein phenotype. Circulation 103, 19421948.
12Superko, HR, Krauss, RM & DiRicco, C (1997) Effect of fluvastatin on low-density lipoprotein peak particle diameter. Am J Cardiol 80, 7881.
13Tilly-Kiesi, M (1991) The effect of lovastatin treatment on low-density lipoprotein hydrated density distribution and composition in patients with intermittent claudication and primary hypercholesterolemia. Metabolism 40, 623628.
14Yu-Poth, S, Zhao, G, Etherton, T, Naglak, M, Jonnalagadda, S & Kris-Etherton, PM (1999) Effects of the National Cholesterol Education Program's Step I and Step II dietary intervention programs on cardiovascular disease risk factors: a meta-analysis. Am J Clin Nutr 69, 632646.
15Anon (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 24862497.
16Krauss, RM, Eckel, RH, Howard, B, et al. (2000) AHA Dietary Guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 102, 22842299.
17Jenkins, DJ, Kendall, CW, Marchie, A, et al. (2005) Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr 81, 380387.
18Almario, RU, Vonghavaravat, V, Wong, R & Kasim-Karakas, SE (2001) Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am J Clin Nutr 74, 7279.
19Charest, A, Desroches, S, Vanstone, CA, Jones, PJ & Lamarche, B (2004) Unesterified plant sterols and stanols do not affect LDL electrophoretic characteristics in hypercholesterolemic subjects. J Nutr 134, 592595.
20Charest, A, Vanstone, C, St Onge, MP, Parson, W, Jones, PJ & Lamarche, B (2005) Phytosterols in nonfat and low-fat beverages have no impact on the LDL size phenotype. Eur J Clin Nutr 59, 801804.
21Davy, BM, Davy, KP, Ho, RC, Beske, SD, Davrath, LR & Melby, CL (2002) High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr 76, 351358.
22Desroches, S, Mauger, JF, Ausman, LM, Lichtenstein, AH & Lamarche, B (2004) Soy protein favorably affects LDL size independently of isoflavones in hypercholesterolemic men and women. J Nutr 134, 574579.
23Matvienko, OA, Lewis, DS, Swanson, M, Arndt, B, Rainwater, DL, Stewart, J & Alekel, DL (2002) A single daily dose of soybean phytosterols in ground beef decreases serum total cholesterol and LDL cholesterol in young, mildly hypercholesterolemic men. Am J Clin Nutr 76, 5764.
24Merz-Demlow, BE, Duncan, AM, Wangen, KE, Xu, X, Carr, TP, Phipps, WR & Kurzer, MS (2000) Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 71, 14621469.
25Wangen, KE, Duncan, AM, Xu, X & Kurzer, MS (2001) Soy isoflavones improve plasma lipids in normocholesterolemic and mildly hypercholesterolemic postmenopausal women. Am J Clin Nutr 73, 225231.
26Varady, KA, St Pierre, AC, Lamarche, B & Jones, P (2005) Effect of plant sterols and endurance training on LDL particle size and distribution in previously sedentary hypercholesterolemic adults. Eur J Clin Nutr 59, 518525.
27Behall, KM, Scholfield, DJ & Hallfrisch, J (2004) Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am J Clin Nutr 80, 11851193.
28Lamarche, B, Desroches, S, Jenkins, DJ, et al. (2004) Combined effects of a dietary portfolio of plant sterols, vegetable protein, viscous fibre and almonds on LDL particle size. Br J Nutr 92, 657663.
29Desroches, S, Archer, WR, Paradis, ME, Deriaz, O, Couture, P, Bergeron, J, Bergeron, N & Lamarche, B (2006) Baseline plasma C-reactive protein concentrations influence lipid and lipoprotein responses to low-fat and high monounsaturated fatty acid diets in healthy men. J Nutr 136, 10051011.
30Erlinger, TP, Miller, ERIII, Charleston, J & Appel, LJ (2003) Inflammation modifies the effects of a reduced-fat low-cholesterol diet on lipids: results from the DASH-sodium trial. Circulation 108, 150154.
31Hilpert, KF, Kris-Etherton, PM & West, SG (2005) Lipid response to a low-fat diet with or without soy is modified by C-reactive protein status in moderately hypercholesterolemic adults. J Nutr 135, 10751079.
32Jenkins, DJ, Kendall, CW, Marchie, A, et al. (2005) Direct comparison of dietary portfolio vs statin on C-reactive protein. Eur J Clin Nutr 59, 851860.
33Jenkins, DJ, Kendall, CW, Faulkner, D, et al. (2002) A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism 51, 15961604.
34Pearson, TA, Mensah, GA, Alexander, RW, et al. (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499511.
35Yudkin, JS, Kumari, M, Humphries, SE & Mohamed-Ali, V (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148, 209214.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed