Skip to main content Accessibility help
×
Home

Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption

  • Caroline Habold (a1), François Reichardt (a1), Yvon Le Maho (a1), Fabielle Angel (a1), Nicole Liewig (a1), Jean-Hervé Lignot (a1) and Hugues Oudart (a1)...

Abstract

Consumption by animals and humans of earthy materials such as clay is often related to gut pathologies. Our aim was to determine the impact of kaolinite ingestion on glucose and NEFA transport through the intestinal mucosa. The expression of hexose transporters (Na/glucose co-transporter 1 (SGLT1), GLUT2, GLUT5) and of proteins involved in NEFA absorption (fatty acid transporter/cluster of differentiation 36 (FAT/CD36), fatty acid transport protein 4 (FATP4) and liver fatty acid binding protein (L-FABP)) was measured (1) in rats whose jejunum was perfused with a solution of kaolinite, and (2) in rats who ate spontaneously kaolinite pellets during 7 and 28 d. Also, we determined TAG and glucose absorption in the kaolinite-perfused group, and pancreatic lipase activity, gastric emptying and intestinal transit in rats orally administered with kaolinite. Glucose absorption was not affected by kaolinite perfusion or ingestion. However, kaolinite induced a significant increase in intestinal TAG hydrolysis and NEFA absorption. The cytoplasmic expression of L-FABP and FATP4 also increased due to kaolinite ingestion. NEFA may enter the enterocytes via endocytosis mainly since expression of NEFA transporters in the brush-border membrane was not affected by kaolinite. After uptake, rapid binding of NEFA by L-FABP and FATP4 could act as an intracellular NEFA buffer to prevent NEFA efflux. Increased TAG hydrolysis and NEFA absorption may be due to the adsorption properties of clay and also because kaolinite ingestion caused a slowing down of gastric emptying and intestinal transit.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Caroline Habold, fax +33 3 8810 6273, email caroline.habold@c-strasbourg.fr

References

Hide All
1Beck, IT, Jenkins, N, Thurber, L, et al. (1977) Methods for the study of antidiarrheal agents. Study of commonly used protective and adsorbent agents. J Med 8, 135158.
2Guarino, A, Bisceglia, M, Castellucci, G, et al. (2001) Smectite in the treatment of acute diarrhea: a nationwide randomized controlled study of the Italian Society of Pediatric Gastroenterology and Hepatology (SIGEP) in collaboration with primary care pediatricians. SIGEP Study Group for Smectite in Acute Diarrhea. J Pediatr Gastroenterol Nutr 32, 7175.
3Moré, J, Bénazet, F, Fioramonti, J, et al. (1987) Effects of treatment with smectite on gastric and intestinal glycoproteins in the rat: a histochemical study. Histochem J 19, 665670.
4Bergaya, F, Theng, BKG & Lagaly, G (2006) Developments in Clay Science, 1, Handbook of Clay Science. Amsterdam: Elsevier.
5Bondy, SC & Harrington, ME (1979) l-Amino acids and l-glucose bind stereospecifically to a colloidal clay. Science 203, 12431244.
6González, R, de Medina, FS, Martínez-Augustin, O, et al. (2004) Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat. Br J Pharmacol 141, 951960.
7Riecken, EO, Dowling, RH, Booth, CC, et al. (1965) Histochemical changes in the rat small intestine associated with enhanced absorption after high bulk feeding. Enzymol Biol Clin (Basel) 5, 231244.
8Vermeer, DE & Ferrell, RE Jr (1985) Nigerian geophagical clay: a traditional antidiarrheal pharmaceutical. Science 227, 634646.
9Kasi, M, Kausar, P, Naz, R, et al. (1995) Treatment of diarrhoea in infants by medical doctors in Balochistan, Pakistan. J Diarrhoeal Dis Res 13, 238241.
10Aufreiter, S, Hancock, RGV, Mahaney, WC, et al. (1997) Geochemistry and mineralogy of soils eaten by humans. Int J Food Sci Nutr 48, 293305.
11Mahaney, WC, Milner, MW, Hs, M, et al. (2000) Mineral and chemical analysis of soils eaten by humans in Indonesia. Int J Environ Health Res 10, 93109.
12Klein, C & Hurlbut, CS (1993) Manual of Mineralogy, 21st ed.New York: John Wiley and Sons.
13Brigatti, MF, Galan, E & Theng, BKG (2006) Structures and mineralogy of clay minerals. In Developments in Clay Science, 1, Handbook of Clay Science, pp. 1986 [Bergaya, F, Theng, BKG and Lagaly, G, editors]. Amsterdam: Elsevier.
14Dominy, NJ, Davoust, E & Minekus, M (2004) Adaptive function of soil consumption: an in vitro study modeling the human stomach and small intestine. J Exp Biol 207, 319324.
15Phillips, TD (1999) Dietary clay in the chemoprevention of aflatoxin-induced disease. Toxicol Sci 52, Suppl. 2, 118126.
16Dowling, RH, Riecken, EO, Laws, JW, et al. (1967) The intestinal response to high bulk feeding in the rat. Clin Sci 32, 19.
17Debnam, ES & Levin, RJ (1975) An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol 246, 181196.
18Kellett, GL & Helliwell, PA (2000) The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J 350, 155162.
19Kellett, GL (2001) The facilitated component of intestinal glucose absorption. J Physiol 531, 585595.
20Thorens, B, Cheng, ZQ, Brown, D, et al. (1990) Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol 259, C279C285.
21Hirsch, D, Stahl, A & Lodish, HF (1998) A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci U S A 95, 86258629.
22Stahl, A, Hirsch, DJ, Gimeno, RE, et al. (1999) Identification of the major intestinal fatty acid transport protein. Mol Cell 4, 299308.
23Stahl, A, Gimeno, R, Tartaglia, LA, et al. (2001) Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12, 266273.
24Bonen, A, Han, XX, Habets, DD, et al. (2007) A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 292, E1740E1749.
25Milger, K, Herrmann, T, Becker, C, et al. (2006) Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci 119, 46784688.
26Fergani, A, Oudart, H, Gonzalez De Aguilar, JL, et al. (2007) Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis. J Lipid Res 48, 15711580.
27Chomczynski, P & Sacchi, N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156159.
28Trayhurn, P, Thomas, ME, Duncan, JS, et al. (1995) Ultra-rapid detection of mRNAs on Northern blots with digoxigenin-labelled oligonucleotides and ‘CDP-Star’, a new chemiluminescence substrate. Biochem Soc Trans 23, 494S.
29Schmitz, J, Preiser, H, Maestracci, D, et al. (1973) Purification of the human intestinal brush border membrane. Biochim Biophys Acta 323, 98112.
30Hames, BD (1996) One dimensional polyacrylamide gel electrophoresis. In Gel Electrophoresis of Proteins: A Practical Approach, 2nd ed., pp. 152 [Hames, BD and Rickwood, D, editors]. Oxford: Oxford University Press.
31Goda, T (2000) Regulation of the expression of carbohydrate digestion/absorption-related genes. Br J Nutr 84, Suppl. 2, S245S248.
32Goda, T, Yasutake, H, Tanaka, T, et al. (1999) Lactase-phlorizin hydrolase and sucrase-isomaltase genes are expressed differently along the villus–crypt axis of rat jejunum. J Nutr 129, 11071113.
33Shioda, T, Ohta, T, Isselbacher, KJ, et al. (1994) Differentiation-dependent expression of the Na+/glucose cotransporter (SGLT1) in LLC-PK1 cells: role of protein kinase C activation and ongoing transcription. Proc Natl Acad Sci U S A 91, 1191911923.
34Peng, H & Lever, JE (1995) Post-transcriptional regulation of Na+/glucose cotransporter (SGTL1) gene expression in LLC-PK1 cells. Increased message stability after cyclic AMP elevation or differentiation inducer treatment. J Biol Chem 270, 2053620542.
35Yeşiloğlu, Y (2005) Utilization of bentonite as a support material for immobilization of Candida rugosa lipase. Process Biochem 40, 21552159.
36Vatier, J, Olivier, JF, Vitre, MT, et al. (1989) Influence of pH in the adsorption capacity of bile salts and lysolecithins in vitro by antacids containing clay and/or aluminium. Gastroenterol Clin Biol 13, 445451.
37Wu, AL & Bennett Clark, S (1976) Resistance of intestinal triglyceride transport capacity in the rat to adaptation to altered luminal environment. Am J Clin Nutr 29, 157168.
38Cartwright, IJ & Higgins, JA (1999) Increased dietary triacylglycerol markedly enhances the ability of isolated rabbit enterocytes to secrete chylomicrons: an effect related to dietary fatty acid composition. J Lipid Res 40, 18581866.
39Heddle, R, Collins, P, Dent, J, et al. (1989) Motor mechanisms associated with slowing of the gastric emptying of a solid meal by an intraduodenal lipid infusion. J Gastroenterol Hepatol 4, 437447.
40Fone, DR, Horowitz, M, Dent, J, et al. (1989) Pyloric motor response to intraduodenal dextrose involves muscarinic mechanisms. Gastroenterology 97, 8390.
41Raybould, HE, Meyer, JH, Tabrizi, Y, et al. (1998) Inhibition of gastric emptying in response to intestinal lipid is dependent on chylomicron formation. Am J Physiol 2, R1834R1838.
42Knudsen, J (1990) Acyl-CoA-binding protein (ACBP) and its relation to fatty acid-binding protein (FABP): an overview. Mol Cell Biochem 98, 217223.
43Besnard, P, Niot, I, Poirier, H, et al. (2002) New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem 239, 139147.
44Poirier, H, Niot, I, Monnot, MC, et al. (2001) Differential involvement of peroxisome-proliferator-activated receptors α and δ in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355, 481488.
45Sakata, T (1986) Effects of indigestible dietary bulk and short chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. J Nutr Sci Vitaminol 32, 355362.
46Abrahams, PW & Parsons, JA (1996) Geophagy in the tropics – a literature review. Geogr J 162, 6372.
47Simon, SL (1998) Soil ingestion by humans: a review of history, data, and etiology with application to risk assessment of radioactively contaminated soil. Health Phys 74, 647672.

Keywords

Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption

  • Caroline Habold (a1), François Reichardt (a1), Yvon Le Maho (a1), Fabielle Angel (a1), Nicole Liewig (a1), Jean-Hervé Lignot (a1) and Hugues Oudart (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed