Skip to main content Accessibility help
×
Home

Characteristics of energy under-reporting in children and adolescents

  • Sandrine Lioret (a1), Mathilde Touvier (a2), Morgan Balin (a1), Inge Huybrechts (a3), Carine Dubuisson (a1), Ariane Dufour (a1), Mélanie Bertin (a1), Bernard Maire (a4) and Lionel Lafay (a1)...

Abstract

Under-reporting (UR) of food intake is an issue of concern, as it may distort the relationships studied between diet and health. This topic has been scarcely addressed in children. The objective of the study was to assess the extent of UR in French children and investigate associated covariates. A total of 1455 children aged 3–17 years were taken from the nationally representative cross-sectional French étude Individuelle Nationale des Consommations Alimentaires (INCA2) dietary survey (2006–7). Food intake was reported in a 7 d diet record. Socio-economic status, sedentary behaviour, weight perception variables and food habits were collected by questionnaires. Weight and height were measured. Under-reporters were identified according to the Goldberg criterion adapted to children. Multivariate logistic regressions investigated the associations between UR and covariates. Rates of under-reporters were 4·9 and 26·0 % in children aged 3–10 and 11–17 years, respectively (P < 0·0001), without significant differences between boys and girls. Overall, UR was positively associated with a lower socio-economic status, overweight, skipping breakfast and dinner, a higher contribution of proteins to energy intake (EI), and a lower contribution of simple carbohydrates to EI. Under-reporters aged 3–10 years also had a higher sedentary behaviour and a lower snack-eating frequency. In adolescents, UR was also associated with a less-frequent school canteen attendance, a perception of being overweight, a wish to weigh less, and current and past restrictive diets. In conclusion, under-reporters differ from plausible reporters in several characteristics related to diet, lifestyle, weight status and socio-economic status. Therefore, it is important to consider this differential UR bias when investigating diet–disease associations in children.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characteristics of energy under-reporting in children and adolescents
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characteristics of energy under-reporting in children and adolescents
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characteristics of energy under-reporting in children and adolescents
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: S. Lioret, fax +33 1 49 77 38 92, email sandrine.lioretsuteau@deakin.edu.au

References

Hide All
1 Black, AE, Prentice, AM, Goldberg, GR, et al. (1993) Measurements of total energy expenditure provide insights into the validity of dietary measurements of energy intake. J Am Diet Assoc 93, 572579.
2 Poslusna, K, Ruprich, J, de Vries, JH, et al. (2009) Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br J Nutr 101, Suppl. 2, S73S85.
3 Livingstone, MB & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, Suppl. 3, S895S920.
4 Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
5 Macdiarmid, J & Blundell, J (1998) Assessing dietary intake: who, what and why of under-reporting. Nutr Res Rev 11, 231253.
6 Nielsen, SJ & Adair, L (2007) An alternative to dietary data exclusions. J Am Diet Assoc 107, 792799.
7 Black, AE (2000) The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur J Clin Nutr 54, 395404.
8 Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24, 11191130.
9 Livingstone, MB & Robson, PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59, 279293.
10 Kersting, M, Sichert-Hellert, W, Lausen, B, et al. (1998) Energy intake of 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37, 4755.
11 Matthys, C, De Henauw, S, Devos, C, et al. (2003) Estimated energy intake, macronutrient intake and meal pattern of Flemish adolescents. Eur J Clin Nutr 57, 366375.
12 Dollman, J, Ridley, K, Magarey, A, et al. (2007) Dietary intake, physical activity and TV viewing as mediators of the association of socioeconomic status with body composition: a cross-sectional analysis of Australian youth. Int J Obes 31, 4552.
13 Torun, B, Davies, PS, Livingstone, MB, et al. (1996) Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. Eur J Clin Nutr 50, Suppl. 1, S37S80; discussion S-1.
14 Sichert-Hellert, W, Kersting, M & Schoch, G (1998) Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37, 242251.
15 Livingstone, MB, Robson, PJ & Wallace, JM (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92, Suppl. 2, S213S222.
16 Dufour, A, Lafay, L & Volatier, JL (2008) La mesure des consommations alimentaires par l'étude INCA2 (The measurement of food consumption by the study INCA2). In Méthodes de sondage, pp. 132137 [Guilbert, P, Haziza, D, Ruiz-Gazen, A and Tillé, Y, editors]. Paris: Dunod.
17 Lioret, S, Dubuisson, C, Dufour, A, et al. (2010) Trends in food intake in French children from 1999 to 2007: results from the INCA (étude Individuelle Nationale des Consommations Alimentaires) dietary surveys. Br J Nutr 103, 585601.
18 Dubuisson, C, Lioret, S, Touvier, M, et al. (2010) Trends in food and nutritional intakes of French adults from 1999 to 2007: results from the INCA surveys. Br J Nutr 103, 10351048.
19 Hercberg, S, Deheeger, M & Preziosi, P (1994) SU-VI-MAX. Portions alimentaires. Manuel photos pour l'estimation des quantités (Food Portions. Photo Manual for Quantity Estimation). Paris: Poly Technica.
20 Favier, JC, Ireland, J, Toque, C, et al. (1995) Répertoire général des aliments (General Directory of Food). Paris: Tec & Doc.
21 Ireland, J, du Chaffaut, L & Oseredczuk, M, et al. (2010) French Food Composition Table, version 2008.1 http://www.afssa.fr. French Food Safety Agency, AFSSA (accessed June 2010).
22 Black, AE, Bingham, SA, Johansson, G, et al. (1997) Validation of dietary intakes of protein and energy against 24 hour urinary N and DLW energy expenditure in middle-aged women, retired men and post-obese subjects: comparisons with validation against presumed energy requirements. Eur J Clin Nutr 51, 405413.
23 FAO/WHO/UNU (1985) Energy and Protein Requirements. In Report of a Joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser, pp. 1206. Geneva: FAO/WHO/UNU.
24 Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, Suppl. 1, S5S41.
25 Dietz, WH, Bandini, LG & Schoeller, DA (1991) Estimates of metabolic rate in obese and non obese adolescents. J Pediatr 118, 146149.
26 Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J 320, 12401243.
27 Volatier, JL (2000) Enquête INCA individuelle et nationale sur les consommations alimentaires (INCA Individual and National French Dietary Survey). Paris: Tec&Doc.
28 Lioret, S, Touvier, M, Lafay, L, et al. (2008) Are eating occasions and their energy content related to child overweight and socioeconomic status? Obesity (Silver Spring) 16, 25182523.
29 Bandini, LG, Must, A, Cyr, H, et al. (2003) Longitudinal changes in the accuracy of reported energy intake in girls 10–15 y of age. Am J Clin Nutr 78, 480484.
30 Rennie, KL, Jebb, SA, Wright, A, et al. (2005) Secular trends in under-reporting in young people. Br J Nutr 93, 241247.
31 McCrory, MA, Hajduk, CL & Roberts, SB (2002) Procedures for screening out inaccurate reports of dietary energy intake. Public Health Nutr 5, 873882.
32 Dietary Survey Unit – Nutritional Epidemiology (OCA-EN) (2009) Report of the French INCA2 Dietary Survey (étude Individuelle Nationale des Consommations Alimentaires 2) 2006/2007. Maisons-Alfort: Afssa.
33 Moreno, LA, Kersting, M, De Henauw, S, et al. (2005) How to measure dietary intake and food habits in adolescence: the European perspective. Int J Obes 29, Suppl. 2, S66S77.
34 EFSA (2009) General Principles for the Collection of National Food Consumption Data in the View of a Pan-European Dietary Survey, vol. 7, Parma: European Food Satefy Authority (EFSA) pp. 1435.
35 Biro, G, Hulshof, KF, Ovesen, L, et al. (2002) Selection of methodology to assess food intake. Eur J Clin Nutr 56, Suppl. 2, S25S32.
36 EFCOVAL (2010) European Food Consumption Validation (EFCOVAL) Closing Conference, 9–10 September 2009, Utrecht, The Netherlands. General information. Arch Public Health 68, Suppl. 1, S1S49.
37 Huang, TT, Roberts, SB, Howarth, NC, et al. (2005) Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Res 13, 12051217.
38 Lioret, S, Maire, B, Volatier, JL, et al. (2007) Child overweight in France and its relationship with physical activity, sedentary behaviour and socio-economic status. Eur J Clin Nutr 61, 509516.
39 Singh, R, Martin, BR, Hickey, Y, et al. (2009) Comparison of self-reported, measured, metabolizable energy intake with total energy expenditure in overweight teens. Am J Clin Nutr 89, 17441750.
40 Bandini, LG, Schoeller, DA, Cyr, HN, et al. (1990) Validity of reported energy intake in obese and nonobese adolescents. Am J Clin Nutr 52, 421425.
41 Perks, SM, Roemmich, JN, Sandow-Pajewski, M, et al. (2000) Alterations in growth and body composition during puberty. IV. Energy intake estimated by the youth-adolescent food-frequency questionnaire: validation by the doubly labeled water method. Am J Clin Nutr 72, 14551460.
42 Savage, JS, Mitchell, DC, Smiciklas-Wright, H, et al. (2008) Plausible reports of energy intake may predict body mass index in pre-adolescent girls. J Am Diet Assoc 108, 131135.
43 Fisher, JO, Johnson, RK, Lindquist, C, et al. (2000) Influence of body composition on the accuracy of reported energy intake in children. Obes Res 8, 597603.
44 Ventura, AK, Loken, E, Mitchell, DC, et al. (2006) Understanding reporting bias in the dietary recall data of 11-year-old girls. Obesity (Silver Spring) 14, 10731084.
45 Rodriguez, G & Moreno, LA (2006) Is dietary intake able to explain differences in body fatness in children and adolescents? Nutr Metab Cardiovasc Dis 16, 294301.
46 Beaton, GH (1994) Approaches to analysis of dietary data: relationship between planned analyses and choice of methodology. Am J Clin Nutr 59, Suppl. 1, S253S261.

Keywords

Characteristics of energy under-reporting in children and adolescents

  • Sandrine Lioret (a1), Mathilde Touvier (a2), Morgan Balin (a1), Inge Huybrechts (a3), Carine Dubuisson (a1), Ariane Dufour (a1), Mélanie Bertin (a1), Bernard Maire (a4) and Lionel Lafay (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed