Skip to main content Accessibility help
×
Home

Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers

  • Helen M. Macdonald (a1), Antonia C. Hardcastle (a1), Garry G. Duthie (a2), Susan J. Duthie (a2), Lorna Aucott (a1), Rena Sandison (a3), Martin J. Shearer (a4) and David M. Reid (a1)...

Abstract

Trials in free-living populations involving increased consumption of fruit and vegetables are difficult to monitor. We evaluated biomarkers for assessing fruit and vegetable intake and compliance in a 2-year trial. Postmenopausal women were randomised to 300 g additional fruit and vegetables per d (n 66), placebo (n 70) or potassium citrate (n 140). They completed dietary checklists (3-monthly) and food diaries or FFQ (yearly). We measured whole-blood folate, plasma vitamin C and homocysteine (yearly), serum vitamin E and carotenoids (at 12 months) and urinary vitamin K metabolites (yearly). Plasma vitamin C was associated with fruit and vegetable intake at baseline (r +0·31; P < 0·01), remaining significant only for the non-fruit and vegetable group at 12 months (r +0·43; P < 0·01). For the fruit and vegetable group, vitamin C increased by 5·9 μmol/l (P = 0·07) but was not significantly associated with fruit and vegetable intake; vitamin E, β-carotene and β-cryptoxanthin were higher compared with the non-fruit and vegetable group (P < 0·05); and whole-blood folate and the urinary 5C-aglycone metabolite of vitamin K were associated with vegetable intake. For all participants plasma vitamin C increased with increasing fruit and vegetable intakes, reaching a plateau of 90–95 μmol/l at intakes>500 g/d, whereas whole-blood folate, β-carotene and β-cryptoxanthin continued to increase. Concentrations of vitamin C, folate and β-cryptoxanthin were lower and the 7C-aglycone metabolite of vitamin K higher, in smokers compared with non-smokers. Suitable markers for monitoring fruit and vegetable compliance include β-carotene and β-cryptoxanthin. Plasma vitamin C and whole-blood folate may be suitable for monitoring intakes in populations but for monitoring compliance the former may be restricted to low intakes of fruit and vegetables and the latter to vegetable intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Helen Macdonald, fax +44 1224 559348, email h.macdonald@abdn.ac.uk

References

Hide All
1He, FJ, Nowson, CA & MacGregor, GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367, 320326.
2Bazzano, LA, He, J, Ogden, LG, et al. (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr 76, 9399.
3Vainio, H & Weiderpass, E (2006) Fruit and vegetables in cancer prevention. Nutr Cancer 54, 111142.
4World Cancer Research Fund (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective: The Second Expert Report. London: WCRF UK.
5Guenther, PM, Dodd, KW, Reedy, J, et al. (2006) Most Americans eat much less than recommended amounts of fruits and vegetables. J Am Diet Assoc 106, 13711379.
6Henderson, L, Gregory, J & Swan, G (2003) National Diet and Nutrition Survey: adults aged 19 to 64 years, vol. 1, types and quantities of foods consumed. London: The Stationery Office.
7Cox, DN, Anderson, AS, Reynolds, J, et al. (1998) Take Five, a nutrition education intervention to increase fruit and vegetable intakes: impact on consumer choice and nutrient intakes. Br J Nutr 80, 123131.
8John, JH, Ziebland, S, Yudkin, P, et al. (2002) Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet 359, 19691974.
9Steptoe, A, Perkins-Porras, L, Rink, E, et al. (2004) Psychological and social predictors of changes in fruit and vegetable consumption over 12 months following behavioral and nutrition education counseling. Health Psychol 23, 574581.
10Peterson, KE, Hebert, JR, Hurley, TG, et al. (2008) Accuracy and precision of two short screeners to assess change in fruit and vegetable consumption among diverse populations participating in health promotion intervention trials. J Nutr 138, 218S225S.
11Welch, AA, Mulligan, A, Bingham, SA, et al. (2008) Urine pH is an indicator of dietary acid–base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. Br J Nutr 99, 13351343.
12Greene, GW, Resnicow, K, Thompson, FE, et al. (2008) Correspondence of the NCI Fruit and Vegetable Screener to repeat 24 h recalls and serum carotenoids in behavioral intervention trials. J Nutr 138, 200S204S.
13Steptoe, A, Perkins-Porras, L, Hilton, S, et al. (2004) Quality of life and self-rated health in relation to changes in fruit and vegetable intake and in plasma vitamins C and E in a randomised trial of behavioural and nutritional education counselling. Br J Nutr 92, 177184.
14Macdonald, HM, Black, AJ, Aucott, L, et al. (2008) Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr 88, 465474.
15Nelson, M, Atkinson, M & Meyer, J (1997) A Photographic Atlas of Food Portion Sizes. London: Ministry of Agriculture, Fisheries and Food.
16Day, N, McKeown, N, Wong, M, et al. (2001) Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int J Epidemiol 30, 309317.
17Macdonald, HM, New, SA & Reid, DM (2005) Longitudinal changes in dietary intake in Scottish women around the menopause: changes in dietary pattern result in minor changes in nutrient intake. Public Health Nutr 8, 409416.
18Food Standards Agency (2002) Food Portion Sizes. London: The Stationery Office.
19Tunstall-Pedoe, H, Smith, WCS, Crombie, IK, et al. (1989) Coronary risk factor and lifestyle variation across Scotland: results from the Scottish Heart Health Study. Scot Med J 34, 556560.
20Duthie, GG (1999) Determination of activity of antioxidants in human subjects. Proc Nutr Soc 58, 10151024.
21Harrington, DJ, Soper, R, Edwards, C, et al. (2005) Determination of the urinary aglycone metabolites of vitamin K by HPLC with redox-mode electrochemical detection. J Lipid Res 46, 10531060.
22Levine, M, Conry-Cantilena, C, Wang, Y, et al. (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 93, 37043709.
23Cappuccio, FP, Rink, E, Perkins-Porras, L, et al. (2003) Estimation of fruit and vegetable intake using a two-item dietary questionnaire: a potential tool for primary health care workers. Nutr Metab Cardiovasc Dis 13, 1219.
24Harding, AH, Wareham, NJ, Bingham, SA, et al. (2008) Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European Prospective Investigation of Cancer-Norfolk prospective study. Arch Intern Med 168, 14931499.
25Macdonald, HM, McGuigan, FE, Fraser, WD, et al. (2004) Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density. Bone 35, 957964.
26Bogers, RP, Dagnelie, PC, Bast, A, et al. (2007) Effect of increased vegetable and fruit consumption on plasma folate and homocysteine concentrations. Nutrition 23, 97102.
27Brouwer, IA, van Dusseldorp, M, West, CE, et al. (1999) Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial. J Nutr 129, 11351139.
28Tucker, KL, Chen, H, Vogel, S, et al. (1999) Carotenoid intakes, assessed by dietary questionnaire, are associated with plasma carotenoid concentrations in an elderly population. J Nutr 129, 438445.
29Ross, MA, Crosley, LK, Brown, KM, et al. (1995) Plasma concentrations of carotenoids and antioxidant vitamins in Scottish males: influences of smoking. Eur J Clin Nutr 49, 861865.
30Fenton, S, Bolton-Smith, C, Harrington, D, et al. (1994) Dietary vitamin K (phylloquinone) intake in Scottish men. Proc Nutr Soc 53, 98A.
31Armstrong, NC, Paganga, G, Brunner, E, et al. (1997) Reference values for α-tocopherol and β-carotene in the Whitehall II Study. Free Radic Res 27, 207219.
32Cade, JE & Margetts, BM (1991) Relationship between diet and smoking – is the diet of smokers different? J Epidemiol Community Health 45, 270272.
33Woodward, M, Bolton-Smith, C & Tunstall-Pedoe, H (1994) Deficient health knowledge, diet, and other lifestyles in smokers: is a multifactorial approach required? Prev Med 23, 354361.
34de Parscau, L & Fielding, CJ (1986) Abnormal plasma cholesterol metabolism in cigarette smokers. Metabolism 35, 10701073.

Keywords

Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers

  • Helen M. Macdonald (a1), Antonia C. Hardcastle (a1), Garry G. Duthie (a2), Susan J. Duthie (a2), Lorna Aucott (a1), Rena Sandison (a3), Martin J. Shearer (a4) and David M. Reid (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed