Skip to main content Accessibility help
×
Home

Changes in plant-based diet quality and health-related quality of life in women

  • Megu Y. Baden (a1), Shiho Kino (a2), Xiaoran Liu (a1), Yanping Li (a1), Yongjoo Kim (a2) (a3), Laura D. Kubzansky (a2) (a3), An Pan (a4), Olivia I. Okereke (a5) (a6), Walter C. Willett (a1) (a5) (a7), Frank B. Hu (a1) (a5) (a7) and Ichiro Kawachi (a2)...

Abstract

Few studies have evaluated the association between a healthful plant-based diet and health-related quality of life (HRQoL). We followed 50 290 women in the Nurses’ Health Study (NHS; 1992–2000) and 51 784 women in NHSII (1993–2001) for 8 years to investigate changes in plant-based diet quality in relation to changes in physical and mental HRQoL. Plant-based diet quality was assessed by three plant-based diet indices: overall plant-based diet index (PDI), healthful PDI (hPDI) and unhealthful PDI (uPDI). Physical and mental HRQoL were measured by physical component score (PCS) and mental component score (MCS) of the 36-Item Short Form Health Survey. Diet was assessed 2 years before the HRQoL measurements and both were updated every 4 years. The associations between 4-year changes in PDIs and HRQoL were evaluated. Each 10-point increase in PDI was associated with an improvement of 0·07 (95 % CI 0·01, 0·13) in PCS and 0·11 (95 % CI 0·05, 0·16) in MCS. A 10-point increase in hPDI was associated with an increment of 0·13 (95 % CI 0·08, 0·19) in PCS and 0·09 (95 % CI 0·03, 0·15) in MCS. Conversely, a 10-point increase in uPDI was associated with decreases in PCS and MCS (−0·07 (95 % CI −0·12, −0·02) and −0·10 (95 % CI −0·16, −0·05), respectively). Compared with a stable diet, an increase in hPDI was significantly associated with improvements in physical HRQoL in older women and with mental HRQoL in younger women. In conclusion, adherence to a healthful plant-based diet was modestly associated with improvements in both physical and mental dimensions of HRQoL.

Copyright

Corresponding author

*Corresponding author: Megu Y. Baden, email mbaden@hsph.harvard.edu

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Huang, T, Yang, B, Zheng, J, et al. (2012) Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab 60, 233240.
2.Tonstad, S, Stewart, K, Oda, K, et al. (2013) Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovas Dis 23, 292299.
3.Yokoyama, Y, Nishimura, K, Barnard, ND, et al. (2014) Vegetarian diets and blood pressure: a meta-analysis. JAMA Intern Med 174, 577587.
4.Beezhold, B, Radnitz, C, Rinne, A, et al. (2015) Vegans report less stress and anxiety than omnivores. Nutr Neurosci 18, 289296.
5.Appleby, PN, Crowe, FL, Bradbury, KE, et al. (2016) Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. Am J Clin Nutr 103, 218230.
6.Ocean, N, Howley, P & Ensor, J (2019) Lettuce be happy: A longitudinal UK study on the relationship between fruit and vegetable consumption and well-being. Soc Sci Med 222, 335345.
7.Wright, N, Wilson, L, Smith, M, et al. (2017) The BROAD study: a randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr Diabetes 7, e256.
8.Null, G & Pennesi, L (2017) Diet and lifestyle intervention on chronic moderate to severe depression and anxiety and other chronic conditions. Complement Ther Clin Pract 29, 189193.
9.Aune, D, Keum, N, Giovannucci, E, et al. (2016) Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 353, i2716.
10.Wang, X, Ouyang, Y, Liu, J, et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349, g4490.
11.Yang, Q, Zhang, Z, Gregg, EW, et al. (2014) Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med 174, 516524.
12.Muraki, I, Rimm, EB, Willett, WC, et al. (2016) Potato consumption and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care 39, 376384.
13.Satija, A, Bhupathiraju, SN, Rimm, EB, et al. (2016) Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med 13, e1002039.
14.Satija, A, Bhupathiraju, SN, Spiegelman, D, et al. (2017) Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J Am Coll Cardiol 70, 411422.
15.Baden, MY, Satija, A, Hu, FB, et al. (2019) Change in plant-based diet quality is associated with changes in plasma adiposity-associated biomarker concentrations in women. J Nutr 149, 676686.
16.Satija, A, Malik, V, Rimm, EB, et al. (2019) Changes in intake of plant-based diets and weight change: results from 3 prospective cohort studies. Am J Clin Nutr 110, 574582.
17.Baden, MY, Liu, G, Satija, A, et al. (2019) Changes in plant-based diet quality and total and cause-specific mortality. Circulation 140, 979991.
18.U.S. Department of Health and Human Services Office of Disease Prevention and Health Promortion (2019) Healthy People 2020. https://www.healthypeople.gov/2020/about/foundation-health-measures/Health-Related-Quality-of-Life-and-Well-Being (accessed February 2020).
19.de Wit, M & Hajos, T (2013) Health-related quality of life. InEncyclopedia of Behavioral Medicine, pp. 929931 [Gellman, MD and Turner, JR, editors]. New York: Springer New York.
20.Bao, Y, Bertoia, ML, Lenart, EB, et al. (2016) Origin, methods, and evolution of the three nurses’ health studies. Am J Public Health 106, 15731581.
21.Pan, A, Kawachi, I, Luo, N, et al. (2014) Changes in body weight and health-related quality of life: 2 cohorts of US women. Am J Epidemiol 180, 254262.
22.Willett, WC, Sampson, L, Stampfer, MJ, et al. (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 5165.
23.Yuan, C, Spiegelman, D, Rimm, EB, et al. (2018) Relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records as compared with urinary recovery and plasma concentration biomarkers: findings for women. Am J Epidemiol 187, 10511063.
24.Brazier, JE, Harper, R, Jones, NM, et al. (1992) Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 305, 160164.
25.Ware, JE, Kosinski, M & Keller, SD (1994) SF-36 Physical and Mental Health Summary Scales: A User’s Manual. Boston, MA: Health Institute, New England Medical Center.
26.McHorney, CA, Ware, JE Jr, Rogers, W, et al. (1992) The validity and relative precision of MOS short- and long-form health status scales and Dartmouth COOP charts. Results from the Medical Outcomes Study. Med Care 30, Ms253Ms265.
27.Ware, JE Jr & Sherbourne, CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30, 473483.
28.Rimm, EB, Stampfer, MJ, Colditz, GA, et al. (1990) Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1, 466473.
29.Chasan-Taber, S, Rimm, EB, Stampfer, MJ, et al. (1996) Reproducibility and validity of a self-administered physical activity questionnaire for male health professionals. Epidemiology 7, 8186.
30.Wolin, KY, Glynn, RJ, Colditz, GA, et al. (2007) Long-term physical activity patterns and health-related quality of life in U.S. women. Am J Prev Med 32, 490499.
31.Cochran, WG (1954) The combination of estimates from different experiments. Biometrics 10, 101129.
32.Mishra, GD, Hockey, R & Dobson, AJ (2014) A comparison of SF-36 summary measures of physical and mental health for women across the life course. Qual Life Res 23, 15151521.
33.Ma, Y, Hebert, JR, Li, W, et al. (2008) Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition 24, 941949.
34.Guo, H, Xia, M, Zou, T, et al. (2012) Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem 23, 349360.
35.Cassidy, A, Rogers, G, Peterson, JJ, et al. (2015) Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr 102, 172181.
36.Ishikawa, T, Suzukawa, M, Ito, T, et al. (1997) Effect of tea flavonoid supplementation on the susceptibility of low-density lipoprotein to oxidative modification. Am J Clin Nutr 66, 261266.
37.Ding, M, Satija, A, Bhupathiraju, SN, et al. (2015) Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation 132, 23052315.
38.Gardener, H, Rundek, T, Wright, CB, et al. (2013) Coffee and tea consumption are inversely associated with mortality in a multiethnic urban population. J Nutr 143, 12991308.
39.McMartin, SE, Jacka, FN & Colman, I (2013) The association between fruit and vegetable consumption and mental health disorders: evidence from five waves of a national survey of Canadians. Prev Med 56, 225230.
40.Kahleova, H, Hrachovinova, T, Hill, M, et al. (2013) Vegetarian diet in type 2 diabetes – improvement in quality of life, mood and eating behaviour. Diabet Med 30, 127129.
41.Bunner, AE, Wells, CL, Gonzales, J, et al. (2015) A dietary intervention for chronic diabetic neuropathy pain: a randomized controlled pilot study. Nutr Diabetes 5, e158.
42.Berk, M, Williams, LJ, Jacka, FN, et al. (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11, 200.
43.Rooney, C, McKinley, MC & Woodside, JV (2013) The potential role of fruit and vegetables in aspects of psychological well-being: a review of the literature and future directions. Proc Nutr Soc 72, 420432.
44.Simpson, HL & Campbell, BJ (2015) Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 42, 158179.
45.Foster, JA & McVey Neufeld, KA (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36, 305312.
46.Dawson, SL, Dash, SR & Jacka, FN (2016) The importance of diet and gut health to the treatment and prevention of mental disorders. Int Rev Neurobiol 131, 325346.
47.Shan, Z, Li, Y & Baden, MY (2020) Association between healthy eating patterns and risk of cardiovascular disease. JAMA Intern Med (epublication ahead of print version 15 June 2020).
48.Boehm, JK, Soo, J, Zevon, ES, et al. (2018) Longitudinal associations between psychological well-being and the consumption of fruits and vegetables. Health Psychol 37, 959967.

Keywords

Type Description Title
WORD
Supplementary materials

Baden et al. supplementary material
Tables S1-S4 and Figures S1-S4

 Word (356 KB)
356 KB

Changes in plant-based diet quality and health-related quality of life in women

  • Megu Y. Baden (a1), Shiho Kino (a2), Xiaoran Liu (a1), Yanping Li (a1), Yongjoo Kim (a2) (a3), Laura D. Kubzansky (a2) (a3), An Pan (a4), Olivia I. Okereke (a5) (a6), Walter C. Willett (a1) (a5) (a7), Frank B. Hu (a1) (a5) (a7) and Ichiro Kawachi (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.