Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-14T00:57:19.978Z Has data issue: false hasContentIssue false

Carotene-cleavage activity in chick intestinal mucosa cytosol: association with a high-molecular-weight lipid-protein aggregate fraction and partial characterization of the activity

Published online by Cambridge University Press:  09 March 2007

David Sklan
Affiliation:
Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A fluorescent high-molecular weight lipid–protein aggregate was isolated from the cytosol of chick intestinal mucosa or liver by gel filtration on columns of Sepharose 4B or 6B.

2. This aggregate exhibited carotene-cleavage activity.

3. On incubation of this aggregate, dissociation occurred and low-molecular weight fractions containing Cu and Zn and exhibiting carotene-cleavage activity were found. This fraction appeared on sodium dodecyl sulphate polyacrylamide electrophoresis to have a molecular weight of 7000–11000 and resembled the previously described Cu chelatins in amino acid composition.

4. Carotene cleavage may be effected by a copper–zinc metalloprotein of low-molecular weight, associated in intestinal cytosol with a lipid–protein aggregate.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Bliss, A. F. (1951). Archives of Biochemistry and Biophysics 32, 197204.CrossRefGoogle Scholar
Bradford, M. M. (1976). Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Chen, C. C. & Heller, J. (1979). Archives of Biochemistry and Biophysics 198, 572579.CrossRefGoogle Scholar
Chhabra, A., Arora, S. P. & Kishan, J. (1980). Indian Journal of Animal Science 50, 879881.Google Scholar
Evans, G. W. & Leblanc, F. N. (1976). Nutrition Reports International 14, 281298.Google Scholar
Fidge, N. H. & Goodman, D. S. (1969). Journal of Biological Chemistry 243, 43724379.CrossRefGoogle Scholar
Fidge, N. H., Shiratori, T., Ganguly, J. & Goodman, D. S. (1968). Journal of Lipid Research 9, 103109.CrossRefGoogle Scholar
Fidge, N. H., Smith, F. R. & Goodman, D. S. (1969). Biochemical Journal 114, 689694.CrossRefGoogle Scholar
Goodman, D. S. & Huang, H. S. (1965). Science 149, 879880.CrossRefGoogle Scholar
Goodman, D. S., Huang, H. S., Kanai, M. & Shiratori, T. (1967). Journal of Biological Chemistry 242, 35433554.CrossRefGoogle Scholar
Harashima, K. (1964). Biochimica et Biophysica Acta 90, 211213.CrossRefGoogle Scholar
Harrison, P. M. & Hoare, R. J. (1980). Metals in Biochemistry, pp. 2164. London: Chapman and Hall.CrossRefGoogle Scholar
Heller, J. (1979). Archives of Biochemistry and Biophysics 198, 562571.CrossRefGoogle Scholar
Hollander, D., Wang, H. P., Chu, C. Y. & Badawi, M. A. (1978). Life Sciences 23, 10111017.CrossRefGoogle Scholar
Huang, H. S. & Goodman, D. S. (1965). Journal of Biological Chemistry 240, 28392844.CrossRefGoogle Scholar
Huber, A. M. & Gershoff, S. N. (1975). Journal of Nutrition 105, 14861490.CrossRefGoogle Scholar
Malmstron, B. G., Andreasson, L. E. & Reinhammer, B. (1975). In The Enzymes, vol. XIIB, p. 507 [Boyer, P. P. editor]. New York: Academic Press.Google Scholar
Mattson, F. H. (1948). Journal of Biological Chemistry 240, 14671468.CrossRefGoogle Scholar
Mattson, F. H., Mehl, J. W. & Deuel, H. (1947). Archives of Biochemistry 15, 6573.Google Scholar
Olson, J. A. (1961). Journal of Biological Chemistry 26, 349356.CrossRefGoogle Scholar
Olson, J. A. & Hayaishi, O. (1965). Proceedings of the National Academy of Science 54, 13641369.CrossRefGoogle Scholar
Prystowsky, J. H., Smith, J. E. & Goodman, D. S. (1981). Journal of Biological Chemistry 256, 44984503.CrossRefGoogle Scholar
Sklan, D., Blaner, W. S., Adachi, N., Smith, J. E. & Goodman, D. S. (1982). Archives of Biochemistry and Biophysics 214, 3544.CrossRefGoogle Scholar
Sklan, D. & Donoghue, S. (1982 a). British Journal of Nutrition 47, 273280.CrossRefGoogle Scholar
Sklan, D. & Donoghue, S. (1982 b). Biochimica et Biophysica Acta 711, 532538.CrossRefGoogle Scholar
Sklan, D., Hurwitz, S., Budowski, P. & Ascarelli, I. (1975). Journal of Nutrition 105, 5763.CrossRefGoogle Scholar
Spencer, R. L. & Wold, H. (1969). Analytical Biochemistry 32, 185190.CrossRefGoogle Scholar
Sundaresan, P. R., Cope, F. O. & Smith, J. C. (1977). Journal of Nutrition 107, 21892197.CrossRefGoogle Scholar
Thompson, S. Y., Ganguly, J. & Kon, S. (1949). British Journal of Nutrition 3, 5078.CrossRefGoogle Scholar
Vallee, B. L. (1976). Biological Aspects of Inorganic Chemistry, pp. 3770. New York: J. Wiley & Sons.Google Scholar
Weber, K. & Osborn, M. (1975). In The Proteins, vol. 1, pp. 179223 [Neurath, H. and Hill, R. L. editors]. New York: Academic Press.CrossRefGoogle Scholar
Winge, D. R., Premakumar, R., Wiley, R. D. & Rajagopalan, K. V. (1975). Archives of Biochemistry and Biophysics 170, 253266.CrossRefGoogle Scholar
Zachman, R. D. & Olson, J. A. (1961). Journal of Biological Chemistry 236, 23092313.CrossRefGoogle Scholar