Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-21T06:19:04.807Z Has data issue: false hasContentIssue false

Calcium-binding protein and vitamin D metabolism in experimental protein malnutrition

Published online by Cambridge University Press:  24 July 2007

W. J. Kalk
Affiliation:
MRC Endocrine Research Group and Isotope Laboratory, University of Cape Town Medical School, Observatory, Cape Town, South Africa
B. L. Pimstone
Affiliation:
MRC Endocrine Research Group and Isotope Laboratory, University of Cape Town Medical School, Observatory, Cape Town, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Intestinal and renal vitamin D-dependent calcium-binding protein (CaBP) activity and cholecalciferol metabolism were investigated in the protein-deficient rat (40 g casein/kg diet) and in control animals (200 g casein/kg diet). Compared to control animals, 3 weeks of protein deprivation resulted in consistently reduced intestinal CaBP activity, while renal CaBP activity was not significantly altered.

2. Intestinal CaBP activity was greatly reduced in rats fed on diets deficient in both protein and vitamin D. CaBP activity was doubled by cholecalciferol administration, but did not reach control values. The rate of conversion of intravenously injected [3H]cholecalciferol to 25-hydroxycholecalciferol (25-HCC) and the disappearance rates of plasma 25-HCC were similar in the two groups of animals.

3. It is concluded that in the protein-deficient rat: (a) intestinal CaBP activity is reduced; (b) coexistent vitamin D deficiency reduces intestinal CaBP activity still further, but the intestinal mucosa retains the potential to respond to administered cholecalciferol: (c) hepatic and probably renal metabolism of cholecalciferol appear to be normal; (d) reduced CaBP is likely to be the result of reduced CaBP synthesis as a consequence of deficient amino acid substrate.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Bett, I. M. & Fraser, G. P. (1958). Biochem. J. 68, 13P.Google Scholar
Bligh, E. G. & Dyer, W. J. (1959). Can. J. Biochem. Physiol. 37, 911.CrossRefGoogle Scholar
Cousins, R. J., DeLuca, H. F. & Gray, R. W. (1970). Biochemistry, Easton 9, 3649.CrossRefGoogle Scholar
Doumas, B. T., Watson, W. A. & Biggs, H. G. (1971). Clinica Chim. Acta 31, 87.CrossRefGoogle Scholar
Fraser, D. R. & Kodicek, E. (1970). Nature, Lond. 228, 764.CrossRefGoogle Scholar
Gray, R., Boyle, I. & DeLuca, H. F. (1971). Science, N. Y. 172, 1232.CrossRefGoogle Scholar
Harper, A. E. (1959). J. Nutr. 68, 405.CrossRefGoogle Scholar
Higginson, J. (1954). Metabolism 3, 392.Google Scholar
Holick, M. F. & DeLuca, H. F. (1971). J. Lipid Res. 12, 460.CrossRefGoogle Scholar
Horsting, M. & DeLuca, H. F. (1969). Fedn Proc. Fedn Am. Socs exp. Biol. 28, 351 Abstr.Google Scholar
Jha, G. J., Deo, M. G. & Ramalingaswami, V. (1968). Am. J. Path. 53, 1111.Google Scholar
Klahr, S. & Alleyne, G. O. A. (1973). Kidney Int. 3, 129.CrossRefGoogle Scholar
Lawson, D. E. M., Fraser, D. R., Kodicek, E., Morris, H. R. & Williams, D. H. (1971). Nature, Lond. 230, 228.CrossRefGoogle Scholar
Le Roith, D. & Pimstone, B. L. (1973). Clin. Sci. 44, 305.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
MacGregor, R. R., Hamilton, J. W. & Cohn, D. V. (1970). Biochim. biophys. Acta 222, 482.CrossRefGoogle Scholar
Oldham, S. B., Arnaud, C. D. & Jowsey, J. (1973). Proc. int. Congr. Endocr., London.Google Scholar
Platt, B. S. & Stewart, R. J. C. (1962). Br. J. Nutr. 16, 483.CrossRefGoogle Scholar
Ponchon, G., Kennan, A. L. & DeLuca, H. F. (1969). J. clin. Invest. 48, 2032.CrossRefGoogle Scholar
Reddy, B. S. (1972). Fedn Proc. Fedn Am. Socs exp. Biol. 31, 688 Abstr.Google Scholar
Reichman, P. & Stein, H. (1968). Br. J. Radiol. 41, 296.CrossRefGoogle Scholar
Shenolikar, A. S. & Narasinga Rao, B. S. (1968). Indian J. med. Res. 50, 1412.Google Scholar
Stead, R. H. & Brock, J. F. (1972). J. Nutr. 102, 1357.CrossRefGoogle Scholar
Taylor, A. N. & Wasserman, R. H. (1969). Fedn Proc. Fedn Am. Socs exp. Biol. 28, 1834.Google Scholar
Taylor, A. N. & Wasserman, R. H. (1970). J. Histochem. Cytochem. 18, 107.CrossRefGoogle Scholar
Taylor, A. N. & Wasserman, R. H. (1972). Am. J. Physiol. 223, 110.CrossRefGoogle Scholar
US Pharmacopaeia, xv (1955). p. 889.Google Scholar
Wasserman, R. H. & Taylor, A. N. (1966). Science, N. Y. 152, 791.CrossRefGoogle Scholar
Wasserman, R. H., Corradino, R. A. & Taylor, A. N. (1968). J. biol. Chem. 243, 3978.CrossRefGoogle Scholar