Skip to main content Accessibility help

Brain imaging and human nutrition: which measures to use in intervention studies?

  • Stéphane V. Sizonenko (a1), Claudio Babiloni (a2) (a3), Eveline A. de Bruin (a4), Elizabeth B. Isaacs (a5), Lena S. Jönsson (a6), David O. Kennedy (a7), Marie E. Latulippe (a6), M. Hasan Mohajeri (a8), Judith Moreines (a9), Pietro Pietrini (a10), Kristine B. Walhovd (a11), Robert J. Winwood (a12) and John W. Sijben (a13)...


The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Brain imaging and human nutrition: which measures to use in intervention studies?
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Brain imaging and human nutrition: which measures to use in intervention studies?
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Brain imaging and human nutrition: which measures to use in intervention studies?
      Available formats


The online version of this article is published within an Open Access environment subject to the conditions of the Creative Attribution-NonCommercial-ShareAlike licence

Corresponding author

Correspondence: ILSI Europe a.i.s.b.l. - Avenue E. Mounier 83, Box 6 - 1200 Brussels - Belgium Email: - Fax: +32 2 762 00 44


Hide All
1Gomez-Pinilla, F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9, 568578.
2Smith, KA, Fairburn, CG & Cowen, PJ (1997) Relapse of depression after rapid depletion of tryptophan. Lancet 349, 915919.
3Isaacs, EB, Morley, R & Lucas, A (2009) Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J Pediatr 155, 229234.
4Wittchen, HU, Jacobi, F, Rehm, J, et al. (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21, 655679.
5Olesen, J, Gustavsson, A, Svensson, M, et al. (2012) The economic cost of brain disorders in Europe. Eur J Neurol 19, 155162.
6Fotuhi, M, Mohassel, P & Yaffe, K (2009) Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol 5, 140152.
7Lucas, A, Morley, R, Cole, TJ, et al. (1990) Early diet in preterm babies and developmental status at 18 months. Lancet 335, 14771481.
8Willatts, P, Forsyth, JS, DiModugno, MK, et al. (1998) Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 352, 688691.
9Scarmeas, N, Stern, Y, Tang, MX, et al. (2006) Mediterranean diet and risk for Alzheimer's disease. Ann Neurol 59, 912921.
10Gesch, CB, Hammond, SM, Hampson, SE, et al. (2002) Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. Randomised, placebo-controlled trial. Br J Psychiatry 181, 2228.
11Schmitt, JA (2010) Nutrition and cognition: meeting the challenge to obtain credible and evidence-based facts. Nutr Rev 68, Suppl. 1, S2S5.
12de Jager, CA & Kovatcheva, A (2010) Summary and discussion: methodologies to assess long-term effects of nutrition on brain function. Nutr Rev 68, Suppl. 1, S53S58.
13Fischl, B, Salat, DH, Busa, E, et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341355.
14Dale, AM, Fischl, B & Sereno, MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179194.
15Fischl, B, Liu, A & Dale, AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20, 7080.
16Fischl, B, Sereno, MI, Tootell, RB, et al. (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8, 272284.
17Fischl, B & Dale, AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97, 1105011055.
18Segonne, F, Grimson, E & Fischl, B (2005) A genetic algorithm for the topology correction of cortical surfaces. Inf Process Med Imaging 19, 393405.
19Segonne, F, Dale, AM, Busa, E, et al. (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 10601075.
20Dale, AM & Sereno, MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5, 162176.
21Rosas, HD, Liu, AK, Hersch, S, et al. (2002) Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58, 695701.
22Kuperberg, GR, Broome, MR, McGuire, PK, et al. (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60, 878888.
23Desikan, RS, Segonne, F, Fischl, B, et al. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968980.
24Ashburner, J & Friston, KJ (2000) Voxel-based morphometry – the methods. Neuroimage 11, 805821.
25Dubois, J, Benders, M, Cachia, A, et al. (2008) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18, 14441454.
26Le, BD (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4, 469480.
27Mori, S & Zhang, J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527539.
28Wozniak, JR & Lim, KO (2006) Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 30, 762774.
29Douaud, G, Jbabdi, S, Behrens, TE, et al. (2011) DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease. Neuroimage 55, 880890.
30Concha, L, Livy, DJ, Beaulieu, C, et al. (2010) In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J Neurosci 30, 9961002.
31Smith, SM, Jenkinson, M, Johansen-Berg, H, et al. (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 14871505.
32Smith, SM, Jenkinson, M, Woolrich, MW, et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, Suppl. 1, S208S219.
33Huppi, PS, Posse, S, Lazeyras, F, et al. (1991) Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 30, 574578.
34Huppi, PS, Fusch, C, Boesch, C, et al. (1995) Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 37, 145150.
35Ross, B & Bluml, S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265, 5484.
36Kreis, R, Hofmann, L, Kuhlmann, B, et al. (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48, 949958.
37Angelie, E, Bonmartin, A, Boudraa, A, et al. (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22, 119127.
38Brooks, JC, Roberts, N, Kemp, GJ, et al. (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11, 598605.
39Boumezbeur, F, Mason, GF, de Graaf, RA, et al. (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30, 211221.
40Forester, BP, Berlow, YA, Harper, DG, et al. (2010) Age-related changes in brain energetics and phospholipid metabolism. NMR Biomed 23, 242250.
41Chang, L, Jiang, CS & Ernst, T (2009) Effects of age and sex on brain glutamate and other metabolites. Magn Reson Imaging 27, 142145.
42Kaiser, LG (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26, 665672.
43Bozgeyik, Z, Burakgazi, G, Sen, Y, et al. (2008) Age-related metabolic changes in the corpus callosum: assessment with MR spectroscopy. Diagn Interv Radiol 14, 173176.
44Charlton, RA, McIntyre, DJ, Howe, FA, et al. (2007) The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Res 1164, 108116.
45Driscoll, I, Hamilton, DA, Petropoulos, H, et al. (2003) The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 13, 13441351.
46Harada, M, Miyoshi, H, Otsuka, H, et al. (2001) Multivariate analysis of regional metabolic differences in normal ageing on localised quantitative proton MR spectroscopy. Neuroradiology 43, 448452.
47van der Knaap, MS, van der Grond, J, van Rijen, PC, et al. (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176, 509515.
48Hanaoka, S, Takashima, S & Morooka, K (1998) Study of the maturation of the child's brain using 31P-MRS. Pediatr Neurol 18, 305310.
49Pettegrew, JW, Withers, G, Panchalingam, K, et al. (1987) 31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer's disease. J Neural Transm Suppl 24, 261268.
50Robertson, NJ, Kuint, J, Counsell, TJ, et al. (2000) Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 20, 14461456.
51Pettegrew, JW, Keshavan, MS & Minshew, NJ (1993) 31P nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia. Schizophr Bull 19, 3553.
52Laureys, S, Boly, M & Tononi, G (2009) Functional neuroimaging. In The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology, pp. 3142 [Laureys, S and Tononi, G, editors]. Academic Press–Elsevier.
53Raichle, ME & Mintun, MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29, 449476.
54Roy, CS & Sherrington, CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11, 85158.
55Ogawa, S, Lee, TM, Nayak, AS, et al. (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14, 6878.
56Wharton, BA, Morley, R, Isaacs, EB, et al. (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89, F497F498.
57Raz, N, Lindenberger, U, Rodrigue, KM, et al. (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15, 16761689.
58Raz, N, Rodrigue, KM & Haacke, EM (2007) Brain aging and its modifiers: insights from in vivo neuromorphometry and susceptibility weighted imaging. Ann N Y Acad Sci 1097, 8493.
59Tolsa, CB, Zimine, S, Warfield, SK, et al. (2004) Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 56, 132138.
60Lodygensky, GA, Seghier, ML, Warfield, SK, et al. (2008) Intrauterine growth restriction affects the preterm infant's hippocampus. Pediatr Res 63, 438443.
61Dubois, J, Benders, M, Borradori-Tolsa, C, et al. (2008) Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131, 20282041.
62Huppi, PS, Murphy, B, Maier, SE, et al. (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107, 455460.
63Huppi PS (2004) Microstructural changes in brain development in premature infants with intrauterine growth restriction (IUGR): a voxel-based analysis of diffusion tensor imaging (DTI). Pediatr Res 55, 582A.
64Sizonenko, SV, Borradori-Tolsa, C, Bauthay, DM, et al. (2006) Impact of intrauterine growth restriction and glucocorticoids on brain development: insights using advanced magnetic resonance imaging. Mol Cell Endocrinol 254–255, 163171.
65Borradori, C (2003) Brain development in newborns following intrauterine growth restriction (IUGR): a study using 3D-MRI, 1H-MRS and neurodevelopment assessment. Pediatr Res 53, 543A.
66Taki, Y, Hashizume, H, Sassa, Y, et al. (2010) Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS One 5, e15213.
67Lucas, A, Gore, SM, Cole, TJ, et al. (1984) Multicentre trial on feeding low birthweight infants: effects of diet on early growth. Arch Dis Child 59, 722730.
68Isaacs, EB, Gadian, DG, Sabatini, S, et al. (2008) The effect of early human diet on caudate volumes and IQ. Pediatr Res 63, 308314.
69Isaacs, EB, Fischl, BR, Quinn, BT, et al. (2010) Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 67, 357362.
70Shaw, P, Greenstein, D, Lerch, J, et al. (2006) Intellectual ability and cortical development in children and adolescents. Nature 440, 676679.
71Steinbrink, C, Vogt, K, Kastrup, A, et al. (2008) The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia 46, 31703178.
72Rykhlevskaia, E, Uddin, LQ, Kondos, L, et al. (2009) Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci 3, 51.
73Blakemore, SJ & Choudhury, S (2006) Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 47, 296312.
74Gu, Y, Luchsinger, JA, Stern, Y, et al. (2010) Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer's disease. J Alzheimers Dis 22, 483492.
75Scarmeas, N, Luchsinger, JA, Stern, Y, et al. (2011) Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann Neurol 69, 257268.
76Bowman, GL, Silbert, LC, Howieson, D, et al. (2012) Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology 78, 241249.
77Feng, L, Ng, TP, Chuah, L, et al. (2006) Homocysteine, folate, and vitamin B-12 and cognitive performance in older Chinese adults: findings from the Singapore Longitudinal Ageing Study. Am J Clin Nutr 84, 15061512.
78Nurk, E, Refsum, H, Tell, GS, et al. (2005) Plasma total homocysteine and memory in the elderly: the Hordaland Homocysteine Study. Ann Neurol 58, 847857.
79Seshadri, S, Wolf, PA, Beiser, AS, et al. (2008) Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch Neurol 65, 642649.
80Elias, MF, Sullivan, LM, D'Agostino, RB, et al. (2005) Homocysteine and cognitive performance in the Framingham offspring study: age is important. Am J Epidemiol 162, 644653.
81Chee, MW, Chen, KH, Zheng, H, et al. (2009) Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage 46, 257269.
82den Heijer, T, Vermeer, SE, Clarke, R, et al. (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126, 170175.
83Sachdev, P, Parslow, R, Salonikas, C, et al. (2004) Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men. Arch Neurol 61, 13691376.
84Smith, AD, Smith, SM, de Jager, CA, et al. (2010) Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 5, e12244.
85Virtanen, JK, Siscovick, DS, Longstreth, WT, et al. (2008) Fish consumption and risk of subclinical brain abnormalities on MRI in older adults. Neurology 71, 439446.
86Quinn, JF, Raman, R, Thomas, RG, et al. (2010) Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304, 19031911.
87Cohen, BM, Renshaw, PF, Stoll, AL, et al. (1995) Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 274, 902907.
88Agarwal, N, Sung, YH, Jensen, JE, et al. (2010) Short-term administration of uridine increases brain membrane phospholipid precursors in healthy adults: a 31-phosphorus magnetic resonance spectroscopy study at 4T. Bipolar Disord 12, 825833.
89Puri, BK (2006) Proton and 31-phosphorus neurospectroscopy in the study of membrane phospholipids and fatty acid intervention in schizophrenia, depression, chronic fatigue syndrome (myalgic encephalomyelitis) and dyslexia. Int Rev Psychiatry 18, 145147.
90Puri, BK, Koepp, MJ, Holmes, J, et al. (2007) A 31-phosphorus neurospectroscopy study of omega-3 long-chain polyunsaturated fatty acid intervention with eicosapentaenoic acid and docosahexaenoic acid in patients with chronic refractory epilepsy. Prostaglandins Leukot Essent Fatty Acids 77, 105107.
91Silveri, MM, Dikan, J, Ross, AJ, et al. (2008) Citicoline enhances frontal lobe bioenergetics as measured by phosphorus magnetic resonance spectroscopy. NMR Biomed 21, 10661075.
92Berger, GE, Wood, SJ, Wellard, RM, et al. (2008) Ethyl-eicosapentaenoic acid in first-episode psychosis. A 1H-MRS study. Neuropsychopharmacology 33, 24672473.
93van der Laan, LN, de Ridder, DT, Viergever, MA, et al. (2011) The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 55, 296303.
94Akitsuki, Y, Nakawaga, S, Sugiura, M, et al. (2011) Nutritional quality of breakfast affects cognitive function: an fMRI study. Neurosci Med 2, 192197.
95Burton, A (2011) Big science for a big problem: ADNI enters its second phase. Lancet Neurol 10, 206207.
96Van Petten, C (2004) Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia 42, 13941413.
97Tamnes, CK, Ostby, Y, Walhovd, KB, et al. (2010) Neuroanatomical correlates of executive functions in children and adolescents: a magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia 48, 24962508.
98Tamnes, CK, Ostby, Y, Fjell, AM, et al. (2010) Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 20, 534548.
99Fjell, AM, Westlye, LT, Amlien, I, et al. (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19, 20012012.
100Walhovd, KB, Fjell, AM, Reinvang, I, et al. (2005) Cortical volume and speed-of-processing are complementary in prediction of performance intelligence. Neuropsychologia 43, 704713.
101Walhovd, KB, Westlye, LT, Amlien, I, et al. (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32, 916932.
102Gusnard, DA, Raichle, ME & Raichle, ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2, 685694.
103Magistretti, PJ & Pellerin, L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354, 11551163.
104Cabeza, R, Grady, CL, Nyberg, L, et al. (1997) Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 17, 391400.
105Grady, CL, McIntosh, AR, Horwitz, B, et al. (1995) Age-related reductions in human recognition memory due to impaired encoding. Science 269, 218221.
106Cabeza, R, Anderson, ND, Locantore, JK, et al. (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17, 13941402.
107Nyberg, L, Salami, A, Andersson, M, et al. (2010) Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci U S A 107, 2268222686.
108Buckner, RL, Head, D, Parker, J, et al. (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23, 724738.
109Sgouros, S, Goldin, JH, Hockley, AD, et al. (1999) Intracranial volume change in childhood. J Neurosurg 91, 610616.
110Fischl, B, van der Kouwe, AJ, Destrieux, C, et al. (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14, 1122.
111Nielson, KA, Langenecker, SA, Ross, TJ, et al. (2004) Comparability of functional MRI response in young and old during inhibition. Neuroreport 15, 129133.
112Huettel, SA, Singerman, JD & McCarthy, G (2001) The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13, 161175.
113Ross, MH, Yurgelun-Todd, DA, Renshaw, PF, et al. (1997) Age-related reduction in functional MRI response to photic stimulation. Neurology 48, 173176.
114Ances, BM, Liang, CL, Leontiev, O, et al. (2009) Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp 30, 11201132.
115Samanez-Larkin, GR & D'Esposito, M (2008) Group comparisons: imaging the aging brain. Soc Cogn Affect Neurosci 3, 290297.
116Handwerker, DA, Gazzaley, A, Inglis, BA, et al. (2007) Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28, 846859.
117Handwerker, DA, Ollinger, JM & D'Esposito, M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 16391651.
118Walhovd, KB, Fjell, AM, Dale, AM, et al. (2010) Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging 31, 11071121.
119Erickson, KI, Suever, BL, Prakash, RS, et al. (2008) Greater intake of vitamins B6 and B12 spares gray matter in healthy elderly: a voxel-based morphometry study. Brain Res 1199, 2026.
120Berger, H (1929) Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 87, 527570.
121Srinivasan, R, Winter, WR & Nunez, PL (2006) Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res 159, 2942.
122Nunez, PL, Wingeier, BM & Silberstein, RB (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13, 125164.
123Babiloni, C, Albertini, G, Onorati, P, et al. (2009) Inter-hemispheric functional coupling of eyes-closed resting EEG rhythms in adolescents with Down syndrome. Clin Neurophysiol 120, 16191627.
124Babiloni, C, Del Percio, C, Valenzano, A, et al. (2009) Frontal attentional responses to food size are abnormal in obese subjects: an electroencephalographic study. Clin Neurophysiol 120, 14411448.
125Babiloni, C, Del Percio, C, Triggiani, AI, et al. (2011) Attention cortical responses to enlarged faces are reduced in underweight subjects: an electroencephalographic study. Clin Neurophysiol 122, 13481359.
126Babiloni, C, Sara, M, Vecchio, F, et al. (2009) Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients. Clin Neurophysiol 120, 719729.
127Babiloni, C, Pistoia, F, Sara, M, et al. (2010) Resting state eyes-closed cortical rhythms in patients with locked-in-syndrome: an EEG study. Clin Neurophysiol 121, 18161824.
128Babiloni, C, Ferri, R, Moretti, DV, et al. (2004) Abnormal fronto-parietal coupling of brain rhythms in mild Alzheimer's disease: a multicentric EEG study. Eur J Neurosci 19, 25832590.
129Babiloni, C, Ferri, R, Binetti, G, et al. (2006) Fronto-parietal coupling of brain rhythms in mild cognitive impairment: a multicentric EEG study. Brain Res Bull 69, 6373.
130Babiloni, C, Frisoni, GB, Pievani, M, et al. (2008) White matter vascular lesions are related to parietal-to-frontal coupling of EEG rhythms in mild cognitive impairment. Hum Brain Mapp 29, 13551367.
131Babiloni, C, Ferri, R, Binetti, G, et al. (2009) Directionality of EEG synchronization in Alzheimer's disease subjects. Neurobiol Aging 30, 93102.
132Babiloni, C, Frisoni, GB, Vecchio, F, et al. (2010) Global functional coupling of resting EEG rhythms is related to white-matter lesions along the cholinergic tracts in subjects with amnesic mild cognitive impairment. J Alzheimers Dis 19, 859871.
133Klimesch, W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29, 169195.
134Rossini, PM, Rossi, S, Babiloni, C, et al. (2007) Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol 83, 375400.
135Koles, ZJ, Lind, JC & Flor-Henry, P (2010) Gender differences in brain functional organization during verbal and spatial cognitive challenges. Brain Topogr 23, 199204.
136Spironelli, C, Penolazzi, B & Angrilli, A (2010) Gender differences in reading in school-aged children: an early ERP study. Dev Neuropsychol 35, 357375.
137Ruxton, CHS (2008) The impact of caffeine on mood, cognitive function, performance and hydration: a review of benefits and risks. Nutr Bull 33, 1525.
138Dimpfel, W, Schober, F & Spuler, M (1993) The influence of caffeine on human EEG under resting conditions and during mental loads. Clin Investig 71, 197207.
139Gevins, A, Smith, ME & McEvoy, LK (2002) Tracking the cognitive pharmacodynamics of psychoactive substances with combinations of behavioral and neurophysiological measures. Neuropsychopharmacology 26, 2739.
140Keane, MA, James, JE & Hogan, MJ (2007) Effects of dietary caffeine on topographic EEG after controlling for withdrawal and withdrawal reversal. Neuropsychobiology 56, 197207.
141Keane, MA & James, JE (2008) Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted. Hum Psychopharmacol 23, 669680.
142Kenemans, JL & Lorist, MM (1995) Caffeine and selective visual processing. Pharmacol Biochem Behav 52, 461471.
143Tieges, Z, Richard, RK, Snel, J, et al. (2004) Caffeine strengthens action monitoring: evidence from the error-related negativity. Brain Res Cogn Brain Res 21, 8793.
144Tieges, Z, Snel, J, Kok, A, et al. (2007) Effects of caffeine on anticipatory control processes: evidence from a cued task-switch paradigm. Psychophysiology 44, 561578.
145Lorist, MM & Tops, M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53, 8294.
146Pfurtscheller, G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83, 6269.
147Galati, S, Stanzione, P, D'Angelo, V, et al. (2009) The pharmacological blockade of medial forebrain bundle induces an acute pathological synchronization of the cortico-subthalamic nucleus-globus pallidus pathway. J Physiol 587, 44054423.
148Knott, VJ & Harr, A (1997) Aging, smoking and EEG coherence: a preliminary study. Clin Electroencephalogr 28, 236244.
149Molnar, M, Boha, R, Czigler, B, et al. (2009) The acute effect of low-dose alcohol on working memory during mental arithmetic: II. Changes of nonlinear and linear EEG-complexity in the theta band, heart rate and electrodermal activity. Int J Psychophysiol 73, 138142.
150Reid, MS, Flammino, F, Howard, B, et al. (2006) Topographic imaging of quantitative EEG in response to smoked cocaine self-administration in humans. Neuropsychopharmacology 31, 872884.
151Struve, FA, Manno, BR, Kemp, P, et al. (2003) Acute marihuana (THC) exposure produces a “transient” topographic quantitative EEG profile identical to the “persistent” profile seen in chronic heavy users. Clin Electroencephalogr 34, 7583.
152Scheltens, P, Twisk, JW, Blesa, R, et al. (2012) Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial. J Alzheimers Dis 31, 225236.
153Birch, EE, Birch, DG, Hoffman, DR, et al. (1992) Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci 33, 32423253.
154Birch, EE, Carlson, SE, Hoffman, DR, et al. (2010) The DIAMOND (DHA Intake And Measurement Of Neural Development) Study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am J Clin Nutr 91, 848859.
155Fontani, G, Corradeschi, F, Felici, A, et al. (2005) Cognitive and physiological effects of omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest 35, 691699.
156Fontani, G, Lodi, L, Migliorini, S, et al. (2009) Effect of omega-3 and policosanol supplementation on attention and reactivity in athletes. J Am Coll Nutr 28, Suppl., 473S481S.
157Helland, IB, Saugstad, OD, Smith, L, et al. (2001) Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics 108, E82.
158Jing, H, Pivik, RT, Dykman, RA, et al. (2007) Effects of breast milk and milk formula diets on synthesized speech sound-induced event-related potentials in 3- and 6-month-old infants. Dev Neuropsychol 31, 349362.
159Jing, H, Gilchrist, JM, Badger, TM, et al. (2010) A longitudinal study of differences in electroencephalographic activity among breastfed, milk formula-fed, and soy formula-fed infants during the first year of life. Early Hum Dev 86, 119125.
160Makrides, M, Neumann, MA, Jeffrey, B, et al. (2000) A randomized trial of different ratios of linoleic to alpha-linolenic acid in the diet of term infants: effects on visual function and growth. Am J Clin Nutr 71, 120129.
161Unay, B, Sarici, SU, Ulas, UH, et al. (2004) Nutritional effects on auditory brainstem maturation in healthy term infants. Arch Dis Child Fetal Neonatal Ed 89, F177F179.
162van Wezel-Meijler, G, van der Knaap, MS, Huisman, J, et al. (2002) Dietary supplementation of long-chain polyunsaturated fatty acids in preterm infants: effects on cerebral maturation. Acta Paediatr 91, 942950.
163Hoffman, DR, Birch, EE, Castaneda, YS, et al. (2003) Visual function in breast-fed term infants weaned to formula with or without long-chain polyunsaturates at 4 to 6 months: a randomized clinical trial. J Pediatr 142, 669677.
164Hoffman, DR, Theuer, RC, Castaneda, YS, et al. (2004) Maturation of visual acuity is accelerated in breast-fed term infants fed baby food containing DHA-enriched egg yolk. J Nutr 134, 23072313.
165Birch, EE, Castaneda, YS, Wheaton, DH, et al. (2005) Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo. Am J Clin Nutr 81, 871879.
166Birch, EE, Garfield, S, Hoffman, DR, et al. (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42, 174181.
167Bougle, D, Denise, P, Vimard, F, et al. (1999) Early neurological and neuropsychological development of the preterm infant and polyunsaturated fatty acids supply. Clin Neurophysiol 110, 13631370.
168Parra-Cabrera, S, Moreno-Macias, H, Mendez-Ramirez, I, et al. (2008) Maternal dietary omega fatty acid intake and auditory brainstem-evoked potentials in Mexican infants born at term: cluster analysis. Early Hum Dev 84, 5157.
169Henriksen, C, Haugholt, K, Lindgren, M, et al. (2008) Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics 121, 11371145.
170Capotosto, P, Babiloni, C, Romani, GL, et al. (2009) Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 29, 58635872.
171Hou, C, Good, WV & Norcia, AM (2007) Validation study of VEP vernier acuity in normal-vision and amblyopic adults. Invest Ophthalmol Vis Sci 48, 40704078.
172Del Parigi, A, Chen, K, Gautier, JF, et al. (2002) Sex differences in the human brain's response to hunger and satiation. Am J Clin Nutr 75, 10171022.
173Girouard, H & Iadecola, C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100, 328335.
174Steinbrink, J, Villringer, A, Kempf, F, et al. (2006) Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 24, 495505.
175Lloyd-Fox, S, Blasi, A & Elwell, CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34, 269284.
176Leff, DR, Orihuela-Espina, F, Elwell, CE, et al. (2011) Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54, 29222936.
177Okamoto, M & Dan, I (2007) Functional near-infrared spectroscopy for human brain mapping of taste-related cognitive functions. J Biosci Bioeng 103, 207215.
178Schecklmann, M, Ehlis, AC, Plichta, MM, et al. (2008) Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency. Neuroimage 43, 147155.
179Kameyama, M, Fukuda, M, Uehara, T, et al. (2004) Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study. Neuroimage 22, 17151721.
180Safonova, LP, Michalos, A, Wolf, U, et al. (2004) Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy. Arch Gerontol Geriatr 39, 207225.
181Herrmann, MJ, Walter, A, Ehlis, AC, et al. (2006) Cerebral oxygenation changes in the prefrontal cortex: effects of age and gender. Neurobiol Aging 27, 888894.
182Schroeter, ML, Zysset, S, Kruggel, F, et al. (2003) Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage 19, 555564.
183Kim, YS, Bogert, LW, Immink, RV, et al. (2011) Effects of aging on the cerebrovascular orthostatic response. Neurobiol Aging 32, 344353.
184Harada, H, Nashihara, H, Morozumi, K, et al. (2007) A comparison of cerebral activity in the prefrontal region between young adults and the elderly while driving. J Physiol Anthropol 26, 409414.
185Strangman, G, Boas, DA & Sutton, JP (2002) Non-invasive neuroimaging using near-infrared light. Biol Psychiatry 52, 679693.
186Pellicer, A & Bravo, MC (2011) Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med 16, 4249.
187Wolf, M, Ferrari, M & Quaresima, V (2007) Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt 12, 062104.
188Hoshi, Y (2005) Functional near-infrared spectroscopy: potential and limitations in neuroimaging studies. Int Rev Neurobiol 66, 237266.
189Cui, X, Bray, S, Bryant, DM, et al. (2011) A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54, 28082821.
190Huppert, TJ, Hoge, RD, Diamond, SG, et al. (2006) A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29, 368382.
191Jobsis, FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 12641267.
192Ghanayem, NS, Wernovsky, G & Hoffman, GM (2011) Near-infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med 12, S27S32.
193Kasman, N & Brady, K (2011) Cerebral oximetry for pediatric anesthesia: why do intelligent clinicians disagree? Paediatr Anaesth 21, 473478.
194Franceschini, MA, Thaker, S, Themelis, G, et al. (2007) Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatr Res 61, 546551.
195Wallois, F, Patil, A, Heberle, C, et al. (2010) EEG-NIRS in epilepsy in children and neonates. Neurophysiol Clin 40, 281292.
196Cohn, SM (2007) Near-infrared spectroscopy: potential clinical benefits in surgery. J Am Coll Surg 205, 322332.
197La, MM, David, A, Gaeta, R, et al. (2010) [Near infrared spectroscopy for cerebral monitoring during cardiovascular surgery]. Clin Ter 161, 549553.
198Len, TK & Neary, JP (2011) Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging 31, 8593.
199Arai, H, Takano, M, Miyakawa, K, et al. (2006) A quantitative near-infrared spectroscopy study: a decrease in cerebral hemoglobin oxygenation in Alzheimer's disease and mild cognitive impairment. Brain Cogn 61, 189194.
200Ohi, K, Hashimoto, R, Yasuda, Y, et al. (2011) The SIGMAR1 gene is associated with a risk of schizophrenia and activation of the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 35, 13091315.
201Takeshi, K, Nemoto, T, Fumoto, M, et al. (2010) Reduced prefrontal cortex activation during divergent thinking in schizophrenia: a multi-channel NIRS study. Prog Neuropsychopharmacol Biol Psychiatry 34, 13271332.
202Vanderhaegen, J, Naulaers, G, van Huffel, S, et al. (2010) Cerebral and systemic hemodynamic effects of intravenous bolus administration of propofol in neonates. Neonatology 98, 5763.
203Weber, P, Lutschg, J & Fahnenstich, H (2007) Methylphenidate-induced changes in cerebral hemodynamics measured by functional near-infrared spectroscopy. J Child Neurol 22, 812817.
204Tsujii, T, Masuda, S, Yamamoto, E, et al. (2009) Effects of sedative and nonsedative antihistamines on prefrontal activity during verbal fluency task in young children: a near-infrared spectroscopy (NIRS) study. Psychopharmacology (Berl) 207, 127132.
205Watanabe, Y, Tanaka, H, Dan, I, et al. (2011) Monitoring cortical hemodynamic changes after sumatriptan injection during migraine attack by near-infrared spectroscopy. Neurosci Res 69, 6066.
206Brassard, P, Seifert, T, Wissenberg, M, et al. (2010) Phenylephrine decreases frontal lobe oxygenation at rest but not during moderately intense exercise. J Appl Physiol 108, 14721478.
207Bonoczk, P, Panczel, G & Nagy, Z (2002) Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: a near infrared spectroscopy and transcranial Doppler study. Eur J Ultrasound 15, 8591.
208Tracy, MB, Klimek, J, Hinder, M, et al. (2010) Does caffeine impair cerebral oxygenation and blood flow velocity in preterm infants? Acta Paediatr 99, 13191323.
209Kennedy, DO & Haskell, CF (2011) Cerebral blood flow and behavioural effects of caffeine in habitual and non-habitual consumers of caffeine: a near infrared spectroscopy study. Biol Psychol 86, 298306.
210Kennedy, DO, Wightman, EL, Reay, JL, et al. (2010) Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr 91, 15901597.
211Wightman, EL, Haskell, CF, Forster, J, et al. (2012) Epigallocatechin gallate (EGCG), cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum Psychopharmacol 27, 177186.
212Watanabe, A, Kato, N & Kato, T (2002) Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res 42, 279285.
213Jackson, PA, Reay, JL, Scholey, AB, et al. (2012) DHA-rich oil modulates the cerebral haemodynamic response to cognitive tasks in healthy young adults: a near IR spectroscopy pilot study. Br J Nutr 107, 10931098.
214Jackson, PA, Reay, JL, Scholey, AB, et al. (2012) Docosahexaenoic acid-rich fish oil modulates the cerebral hemodynamic response to cognitive tasks in healthy young adults. Biol Psychol 89, 183190.
215Horwitz, B, Friston, KJ & Taylor, JG (2000) Neural modeling and functional brain imaging: an overview. Neural Netw 13, 829846.
216Wong, DR & Brasic, JR (2001) In vivo imaging of neurotransmitter systems in neuropsychiatry. Clin Neurosci Res 1, 3545.
217Holcomb, HH, Links, J, Smith, C, et al. (1989) Positron mission tomography measuring the metabolic and neurochemical characteristics of the living human nervous system. In Brain Imaging: Applications in Psychiatry, pp. 235370 [Andreasen, N, editor]. Washington, DC: American Psychiatric Press, Inc.
218Reivich, M, Kuhl, D, Wolf, A, et al. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44, 127137.
219Sokoloff, L, Reivich, M, Kennedy, C, et al. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28, 897916.
220Sokoloff, L (1982) The radioactive deoxyglucose method, theory, procedure and application for the measurement of local cerebral glucose utilization in the central nervous system. In Advances in Neurochemistry, pp. 182 [Agranoff, BW and Aprison, MH, editors]. New York, NY: Plenum Press.
221Paus, T (2010) A primer for brain imaging: a tool for evidence-based studies of nutrition? Nutr Rev 68, Suppl. 1, S29S37.
222Wong, TZ, van der Westhuizen, GJ & Coleman, RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12, 615626.
223Gautier, JF, Chen, K, Salbe, AD, et al. (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49, 838846.
224Tataranni, PA, Gautier, JF, Chen, K, et al. (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A 96, 45694574.
225Le, DS, Chen, K, Pannacciulli, N, et al. (2009) Reanalysis of the obesity-related attenuation in the left dorsolateral prefrontal cortex response to a satiating meal using gyral regions-of-interest. J Am Coll Nutr 28, 667673.
226Small, GW, Silverman, DH, Siddarth, P, et al. (2006) Effects of a 14-day healthy longevity lifestyle program on cognition and brain function. Am J Geriatr Psychiatry 14, 538545.
227Del Parigi, A, Chen, K, Salbe, AD, et al. (2007) Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes (Lond) 31, 440448.
228Stunkard, AJ & Messick, S (1985) The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 29, 7183.
229Miller, EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22, 1517.
230Rolls, ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10, 284294.
231Hinton, EC, Parkinson, JA, Holland, AJ, et al. (2004) Neural contributions to the motivational control of appetite in humans. Eur J Neurosci 20, 14111418.
232Nugent, S, Croteau, E, Pifferi, F, et al. (2011) Brain and systemic glucose metabolism in the healthy elderly following fish oil supplementation. Prostaglandins Leukot Essent Fatty Acids 85, 287291.
233Grimaldi, BL (2002) The central role of magnesium deficiency in Tourette's syndrome: causal relationships between magnesium deficiency, altered biochemical pathways and symptoms relating to Tourette's syndrome and several reported comorbid conditions. Med Hypotheses 58, 4760.
234Garcia-Lopez, R, Perea-Milla, E, Garcia, CR, et al. (2009) New therapeutic approach to Tourette Syndrome in children based on a randomized placebo-controlled double-blind phase IV study of the effectiveness and safety of magnesium and vitamin B6. Trials 10, 16.
235Frank, Y & Pavlakis, SG (2001) Brain imaging in neurobehavioral disorders. Pediatr Neurol 25, 278287.
236Lepping, P & Huber, M (2010) Role of zinc in the pathogenesis of attention-deficit hyperactivity disorder: implications for research and treatment. CNS Drugs 24, 721728.
237Ferri, CP, Prince, M, Brayne, C, et al. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366, 21122117.
238Cunnane, S, Nugent, S, Roy, M, et al. (2011) Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 27, 320.
239Pietrini, P & Rapoport, SI (2000) Functional brain imaging: cerebral blood flow and glucose metabolism in healthy human aging. In Textbook of Geriatric Neuropsychiatry, pp. 239265 [Coffey, CE and Cumming, JL, editors]. Washington, DC: American Psychiatric Press.
240Pietrini, P, Alexander, GE, Furey, ML, et al. (2000) The neurometabolic landscape of cognitive decline: in vivo studies with positron emission tomography in Alzheimer's disease. Int J Psychophysiol 37, 8798.
241Eckelman, WC, Grissom, M, Conklin, J, et al. (1984) In vivo competition studies with analogues of 3-quinuclidinyl benzilate. J Pharm Sci 73, 529534.
242Kung, HF, Ohmomo, Y & Kung, MP (1990) Current and future radiopharmaceuticals for brain imaging with single photon emission computed tomography. Semin Nucl Med 20, 290302.
243Newberg, AB, Alavi, A & Payer, F (1995) Single photon emission computed tomography in Alzheimer's disease and related disorders. Neuroimaging Clin N Am 5, 103123.
244Devous, MD Sr, Stokely, EM & Bonte, FJ (1985) Quantitative imaging of regional cerebral blood flow in man by dynamic single-photon tomography. In Radionuclide Imaging of the Brain, pp. 135162 [Holman, BL, editor]. New York, NY: Churchill Livingstone.
245Juni, JE, Waxman, AD, Devous, MD, et al. (1998) Procedure guideline for brain perfusion SPECT using technetium-99m radiopharmaceuticals. Society of Nuclear Medicine. J Nucl Med 39, 923926.
246Masdeu, JC, Brass, LM, Holman, BL, et al. (1994) Brain single-photon emission computed tomography. Neurology 44, 19701977.
247Van Heertum, RL & Tikofsky, RS (2003) Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med 33, 7785.
248Usai, P, Serra, A, Marini, B, et al. (2004) Frontal cortical perfusion abnormalities related to gluten intake and associated autoimmune disease in adult coeliac disease: 99mTc-ECD brain SPECT study. Dig Liver Dis 36, 513518.
249Karhunen, LJ, Vanninen, EJ, Kuikka, JT, et al. (2000) Regional cerebral blood flow during exposure to food in obese binge eating women. Psychiatry Res 99, 2942.
250de Weijer, BA, van de Giessen, E, van Amelsvoort, TA, et al. (2011) Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res 1, 37.
251Bender, A, Koch, W, Elstner, M, et al. (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67, 12621264.
252Blundo, C, Marin, D & Ricci, M (2011) Vitamin B12 deficiency associated with symptoms of frontotemporal dementia. Neurol Sci 32, 101105.
253de Wilde, MC, Kamphuis, PJ, Sijben, JW, et al. (2011) Utility of imaging for nutritional intervention studies in Alzheimer's disease. Eur J Pharmacol 668, Suppl. 1, S59S69.
254Robertson, NJ & Cox, IJ (2002) Magnetic resonance spectroscopy of the neonatal brain. In MRI of the Neonatal Brain, [Rutherford, MA, editor]. London: Saunders Ltd.
255Buchli, R, Martin, E, Boesiger, P, et al. (1994) Developmental changes of phosphorus metabolite concentrations in the human brain: a 31P magnetic resonance spectroscopy study in vivo. Pediatr Res 35, 431435.


Brain imaging and human nutrition: which measures to use in intervention studies?

  • Stéphane V. Sizonenko (a1), Claudio Babiloni (a2) (a3), Eveline A. de Bruin (a4), Elizabeth B. Isaacs (a5), Lena S. Jönsson (a6), David O. Kennedy (a7), Marie E. Latulippe (a6), M. Hasan Mohajeri (a8), Judith Moreines (a9), Pietro Pietrini (a10), Kristine B. Walhovd (a11), Robert J. Winwood (a12) and John W. Sijben (a13)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed