Skip to main content Accessibility help
×
Home

Body fat in lean and overweight women estimated by six methods

  • G. McNeill (a1), P. A. Fowler (a2), R. J. Maughan (a3), B. A. McGaw (a1), M. F. Fuller (a1), D. Gvozdanovic (a2) and S. Gvozdanovic (a2)...

Abstract

Body fat content of seven lean women (body mass index (BMI) 20.6 (sd1.8) kg/m2) and seven overweight women (BMI 31.1 (sd 3.3) kg/m2) was estimated by six different methods: underwater weighing (UWW), body-water dilution (BWD), whole-body counting (40K), skinfold thickness (SFT), bio-electrical impedance (BEI) and magnetic resonance imaging (MRI). Using UWW as the reference method, the differences between percentage fat by each other method and the percentage fat by UWW were calculated for each subject. The mean difference was lowest for SFT and highest for BWD. MRI showed the lowest variability in individual results, and 40K the highest. 40K and BWD methods used in combination gave better agreement with UWW results than either 40K or BWD methods alone. There was a weak negative correlation between the difference from the UWW results and percentage fat in the SFT measurements, but not in the BWD, 40K, BEI or MRI measurements, suggesting that for these methods the assumptions involved produced no greater inaccuracy in the overweight women than in the lean women. In all subjects the BEI offered little improvement over the traditional SFT measurements. The agreement between MRI and UWW estimates in both lean and overweight women suggests that MRI may be a satisfactory substitute for the more established methods of body fat estimation in adult women.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Body fat in lean and overweight women estimated by six methods
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Body fat in lean and overweight women estimated by six methods
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Body fat in lean and overweight women estimated by six methods
      Available formats
      ×

Copyright

References

Hide All
Bland, J. M. & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i, 307310.
Bruce, A., Andersson, M., Arvidson, B. & Isaksson, B. (1980). Body composition. Prediction of normal body potassium, body water and body fat in adults on the basis of body height, body weight and age. Scandinavian Journal of Clinical and Laboratory Investigation 40, 461473.
Durnin, J. V. G. A. & Womersley, J. (1974). Body fat assessed from total body density, and its estimation from skinfold thickness. British Journal of Nutrition 32, 7797.
Foster, M. A., Hutchison, J. M. S., Mallard, J. R. & Fuller, M. F. (1984). Nuclear magnetic resonance pulse sequence and discrimination of high- and low-fat tissues. Magnetic Resonance Imaging 2, 187197.
Fowler, P. A., Casey, C. E., Cameron, G. G., Foster, M. A. & Knight, C. H. (1990 a). Cyclic changes in composition and volume of the breast during the menstrual cycle, measured by magnetic resonance imaging. British Journal of Obstetrics and Gynaecology 97, 595602.
Fowler, P. A., Knight, C. H., Cameron, G. G. & Foster, M. A. (1990 b). Use of magnetic resonance imaging in the study of goat mammary glands in vivo. Journal of Reproduction and Fertility 89, 359366.
Garrow, J. S. (1974). Energy Balance and Obesity in Man. Amsterdam: Elsevier/North Holland.
Garrow, J. S. (1988). Obesity and Eating Disorders. London: Churchill Livingstone.
Garrow, J. S., Garby, L. & Lammert, O. (1990). Comparison of estimates of fat-free mass in normal and obese women from measurements of body potassium, body water and body density. European Journal of Clinical Nutrition 44, 213217.
Gvozdanovic, S. & Gvozdanovic, D. (1987). Total body potassium measurements in subjects of ‘abnormal’ body shapes. Hospital Physicists Association Proceedings of 44th Annual Conference, Liverpool, p. 40. London: Hospital Physicists' Association.
Kryzwicki, H. J., Ward, G. M., Rahman, D. P., Nelson, R. A. & Consolazio, C. F. (1974). A comparison of methods for estimating human body composition. American Journal of Clinical Nutrition 27, 13801385.
Kvist, H., Chowdhury, B., Sjostrom, L., Tylen, U. & Cederblad, A. (1988). Adipose tissue volume determination in males by computed tomography and 40K. International Journal of Obesity 12, 249266.
Lukaski, H. C., Mendez, J., Buskirk, E. R. & Cohn, S. H. (1981). A comparison of methods of assessment of body composition including neutron activation analysis of total body nitrogen. Metabolism 30, 777782.
McNeill, G., Fowler, P. A., Maughan, R. J., McGaw, B. A., Gvozdanovic, S., Gvozdanovic, D. & Fuller, M. F. (1989). Body fat in lean and obese women measured by six methods. Proceedings of the Nutrition Society 48, 23A.
Maughan, R. J., Haggarty, P., McGaw, B. A., Gvozdanovic, D. & Gvozdanovic, S. (1988). Measurement of body composition in lean athletic women. Proceedings of the Nutrition Society 47, 112A.
Morgan, D. B. & Burkinshaw, L. (1983). Estimation of non-fat body tissues from measurements of skinfold thickness, total body potassium and total body nitrogen. Clinical Science 65, 407414.
Pace, N. & Rathbun, E. N. (1945). Studies on body composition. III. The body water and chemically combined nitrogen content in relation to fat content. Journal of Biological Chemistry 158, 685691.
Pittet, P. G., Stalley, S. F., Hesp, R. & Halliday, D. (1978). Body composition of women assessed by five methods. Proceedings of the Nutrition Society 37, 86A.
Redpath, T. W., Hutchison, J. M. S., Eastwood, L. M., Selbie, R. D., Johnson, G., Jones, R. A. & Mallard, J. R. (1987). A low field NMR imager for clinical use. Journal of Physics and Electronics: Scientific Instrumentation 20, 12281234.
Schoeller, D. A., Ravussin, E., Schutz, Y., Acheson, K. J., Baertschi, P. & Jequier, E. (1986). Energy expenditure by doubly labelled water: validation in humans and proposed calculation. American Journal of Physiology 250, R823–R860.
Schoeller, D. A., van Santen, E., Peterson, D. W., Dietz, W., Jaspan, J. & Klein, P. D. (1980). Total body water measurement in humans with 18O and 2H labelled water. American Journal of Clinical Nutrition 33, 26862693.
Sheng, H.-P. & Huggins, R. A. (1979). A review of body composition studies with emphasis on total body water and fat. American Journal of Clinical Nutrition 32, 630647.
Siri, W. E. (1961). In Techniques for Measuring Body Composition, pp. 223245 [Brozek, J. & Henschel, A., editors]. Washington, DC: National Academy of Science/National Research Council.
Watson, P. E., Watson, I. D. & Batt, R. D. (1980). Total body water volumes for adult males and females estimated from simple anthropometric measurements. American Journal of Clinical Nutrition 33, 2739.
Webster, J. D., Hesp, R. & Garrow, J. S. (1984). The composition of excess weight in obese women, estimated by body density, total body water and total body potassium. Human Nutrition: Clinical Nutrition 38C, 299306.
Wilmore, J. H., Vodak, P. A., Parr, R. B., Girandola, R. N. & Billing, J. E. (1980). Further simplification of a method for determination of residual lung volume. Medicine and Science in Sports and Exercise 12, 216218.
Womersley, J., Boddy, K., King, P. L. & Durnin, J. V. G. A. (1972). A comparison of the fat-free mass of young adults estimated by anthropometry, body density and total body potassium content. Clinical Science 43, 469475.
Wong, W. W., Cabrera, M. P. & Klein, P. D. (1984). Evaluation of a new dual mass spectrometer system for rapid simultaneous determination of 2H/1H and 18O/16O ratios in aqueous samples. Analytical Chemistry 56, 18521858.

Keywords

Body fat in lean and overweight women estimated by six methods

  • G. McNeill (a1), P. A. Fowler (a2), R. J. Maughan (a3), B. A. McGaw (a1), M. F. Fuller (a1), D. Gvozdanovic (a2) and S. Gvozdanovic (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed