Skip to main content Accessibility help
×
Home

Blood lactose after dairy product intake in healthy men

  • Grégory Pimentel (a1) (a2), Kathryn J. Burton (a2), Marta Rosikiewicz (a3), Carola Freiburghaus (a1), Ueli von Ah (a1), Linda H. Münger (a1), François P. Pralong (a2), Nathalie Vionnet (a2), Gilbert Greub (a3), René Badertscher (a1) and Guy Vergères (a1)...

Abstract

The absence of a dedicated transport for disaccharides in the intestine implicates that the metabolic use of dietary lactose relies on its prior hydrolysis at the intestinal brush border. Consequently, lactose in blood or urine has mostly been associated with specific cases in which the gastrointestinal barrier is damaged. On the other hand, lactose appears in the blood of lactating women and has been detected in the blood and urine of healthy men, indicating that the presence of lactose in the circulation of healthy subjects is not incompatible with normal physiology. In this cross-over study we have characterised the postprandial kinetics of lactose, and its major constituent, galactose, in the serum of fourteen healthy men who consumed a unique dose of 800 g milk or yogurt. Genetic testing for lactase persistence and microbiota profiling of the subjects were also performed. Data revealed that lactose does appear in serum after dairy intake, although with delayed kinetics compared with galactose. Median serum concentrations of approximately 0·02 mmol/l lactose and approximately 0·2 mmol/l galactose were observed after the ingestion of milk and yogurt respectively. The serum concentrations of lactose were inversely correlated with the concentrations of galactose, and the variability observed between the subjects’ responses could not be explained by the presence of the lactase persistence allele. Finally, lactose levels have been associated with the abundance of the Veillonella genus in faecal microbiota. The measurement of systemic lactose following dietary intake could provide information about lactose metabolism and nutrient transport processes under normal or pathological conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Blood lactose after dairy product intake in healthy men
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Blood lactose after dairy product intake in healthy men
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Blood lactose after dairy product intake in healthy men
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: G. Vergères, email guy.vergeres@agroscope.admin.ch

References

Hide All
1. Drozdowski, LA & Thomson, AB (2006) Intestinal sugar transport. World J Gastroenterol 12, 16571670.
2. Curry, A (2013) Archaeology: the milk revolution. Nature 500, 2022.
3. Silanikove, N, Leitner, G & Merin, U (2015) The interrelationships between lactose intolerance and the modern dairy industry: global perspectives in evolutional and historical backgrounds. Nutrients 7, 73127331.
4. Cox, DB, Kent, JC, Casey, TM, et al. (1999) Breast growth and the urinary excretion of lactose during human pregnancy and early lactation: endocrine relationships. Exp Physiol 84, 421434.
5. Hubbard, RS & Brock, HJ (1935) Lactose in the plasma of pregnant and lactating women. J Biol Chem 110, 411420.
6. Bezerra, JA, Thompson, SH, Morse, M, et al. (1990) Intestinal permeability to intact lactose in newborns and adults. Biol Neonate 58, 334342.
7. Gryboski, JD, Thayer, WR Jr, Gryboski, WA, et al. (1963) A defect in disaccharide metabolism after gastrojejunostomy. N Engl J Med 268, 7880.
8. Weser, E & Sleisenger, MH (1965) Lactosuria and lactase deficiency in adult celiac disease. Gastroenterology 48, 571578.
9. Noone, C, Menzies, IS, Banatvala, JE, et al. (1986) Intestinal permeability and lactose hydrolysis in human rotaviral gastroenteritis assessed simultaneously by non-invasive differential sugar permeation. Eur J Clin Invest 16, 217225.
10. Northrop, CA, Lunn, PG & Behrens, RH (1990) Automated enzymatic assays for the determination of intestinal permeability probes in urine. 1. Lactulose and lactose. Clin Chim Acta 187, 7987.
11. Weser, E & Sleisenger, MH (1967) Metabolism of circulating disaccharides in man and the rat. J Clin Invest 46, 499505.
12. Stuhlfauth, K, Hofmann, E & Heinz, F (1962) [Lactosemia and lactosuria before and after lactose load]. Klin Wochenschr 40, 11511153.
13. Menzies, IS (1974) Absorption of intact oligosaccharide in health and disease. Biochem Soc Trans 2, 10421047.
14. Pellis, L, van Erk, MJ, van Ommen, B, et al. (2012) Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics 8, 347359.
15. Burton, KJ, Rosikiewicz, M, Pimentel, G, et al. (2017) Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. Br J Nutr 117, 13121322.
16. Pimentel, G, Burton, KJ, Pralong, FP, et al. (2017) The postprandial metabolome – a source of nutritional biomarkers of health. Curr Opin Food Sci 16, 6773.
17. Begley, P, Francis-McIntyre, S, Dunn, WB, et al. (2009) Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal Chem 81, 70387046.
18. Edgar, RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10, 996998.
19. Altschul, SF, Gish, W, Miller, W, et al. (1990) Basic local alignment search tool. J Mol Biol 215, 403410.
20. Krug, S, Kastenmuller, G, Stuckler, F, et al. (2012) The dynamic range of the human metabolome revealed by challenges. FASEB J 26, 26072619.
21. Bondia-Pons, I, Nordlund, E, Mattila, I, et al. (2011) Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutr J 10, 116.
22. Moazzami, AA, Shrestha, A, Morrison, DA, et al. (2014) Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women. J Nutr 144, 807814.
23. Pantophlet, AJ, Wopereis, S, Eelderink, C, et al. (2017) Metabolic profiling reveals differences in plasma concentrations of arabinose and xylose after consumption of fiber-rich pasta and wheat bread with differential rates of systemic appearance of exogenous glucose in healthy men. J Nutr 147, 152160.
24. Munger, LH, Trimigno, A, Picone, G, et al. (2017) Identification of urinary food intake biomarkers for milk, cheese, and soy-based drink by untargeted GC-MS and NMR in healthy humans. J Proteome Res 16, 33213335.
25. Noguchi, K, Gel, YR, Brunner, E, et al. (2012) nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw 50, 112.
26. Benjamini, Y & Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57, 289300.
27. Woodfin, BM & Arora, S (1997) Lactose intolerance. In Clinical Studies in Medical Biochemistry, 2nd ed., pp. 152160 [RH Glew and Y Ninomiya, editors]. New York: Oxford University Press.
28. Kaempf, JW, Li, HQ, Groothuis, JR, et al. (1988) Galactose, glucose, and lactate concentrations in the portal venous and arterial circulations of newborn lambs after nursing. Pediat Res 23, 598602.
29. Siegel, CD, Sparks, JW & Battaglia, FC (1988) Patterns of serum glucose and galactose concentrations in term newborn infants after milk feeding. Biol Neonate 54, 301306.
30. Zoetendal, EG, Raes, J, van den Bogert, B, et al. (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6, 14151426.
31. Seeliger, S, Janssen, PH & Schink, B (2002) Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 211, 6570.
32. Janssen, PH (1992) Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula . Arch Microbiol 157, 442445.
33. Shaw, KA, Bertha, M, Hofmekler, T, et al. (2016) Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Med 8, 75.
34. Camelo-Castillo, A, Novoa, L, Balsa-Castro, C, et al. (2015) Relationship between periodontitis-associated subgingival microbiota and clinical inflammation by 16S pyrosequencing. J Clin Periodontol 42, 10741082.
35. Moreno-Indias, I, Sanchez-Alcoholado, L, Garcia-Fuentes, E, et al. (2016) Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am J Transl Res 8, 56725684.
36. Palleja, A, Kashani, A, Allin, KH, et al. (2016) Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med 8, 67.
37. Sanggaard, KM, Holst, JJ, Rehfeld, JF, et al. (2004) Different effects of whole milk and a fermented milk with the same fat and lactose content on gastric emptying and postprandial lipaemia, but not on glycaemic response and appetite. Br J Nutr 92, 447459.
38. Gomez, F, Hirbo, J & Tishkoff, SA (2014) Genetic variation and adaptation in Africa: implications for human evolution and disease. Cold Spring Harb Perspect Biol 6, a008524.
39. Deng, Y, Misselwitz, B, Dai, N, et al. (2015) Lactose intolerance in adults: biological mechanism and dietary management. Nutrients 7, 80208035.

Keywords

Type Description Title
PDF
Supplementary materials

Pimentel et al supplementary material
Pimentel et al supplementary material 1

 PDF (18 KB)
18 KB
PDF
Supplementary materials

Pimentel et al supplementary material
Pimentel et al supplementary material 2

 PDF (23 KB)
23 KB
PDF
Supplementary materials

Pimentel et al supplementary material
Pimentel et al supplementary material 3

 PDF (22 KB)
22 KB

Blood lactose after dairy product intake in healthy men

  • Grégory Pimentel (a1) (a2), Kathryn J. Burton (a2), Marta Rosikiewicz (a3), Carola Freiburghaus (a1), Ueli von Ah (a1), Linda H. Münger (a1), François P. Pralong (a2), Nathalie Vionnet (a2), Gilbert Greub (a3), René Badertscher (a1) and Guy Vergères (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed