Skip to main content Accessibility help
×
Home

The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition

  • Alfonso Clemente (a1), M. Carmen Marín-Manzano (a1), Elisabeth Jiménez (a1), M. Carmen Arques (a1) and Claire Domoney (a2)...

Abstract

Bowman–Birk inhibitors (BBI) from legumes, such as soyabean, pea, lentil and chickpea, are naturally occurring plant protease inhibitors which have potential health-promoting properties within the mammalian gastrointestinal tract. BBI can survive both acidic conditions and the action of proteolytic enzymes within the stomach and small intestine, permitting significant amounts to reach the large intestine in active form to exert their reported anti-carcinogenic and anti-inflammatory properties. In a previous study, we reported the ability of a recombinant form of TI1B (rTI1B), representing a major BBI isoinhibitor from pea, to influence negatively the growth of human colorectal adenocarcinoma HT29 cells in vitro. In the present study, we investigate if this effect is related directly to the intrinsic ability of BBI to inhibit serine proteases. rTI1B and a novel engineered mutant, having amino acid substitutions at the P1 positions in the two inhibitory domains, were expressed in the yeast Pichia pastoris. The rTI1B proved to be active against trypsin and chymotrypsin, showing Ki values at nanomolar concentrations, whereas the related mutant protein was inactive against both serine proteases. The proliferation of HT29 colon cancer cells was significantly affected by rTI1B in a dose-dependent manner (IC50 = 31 (sd 7) μm), whereas the inactive mutant did not show any significant effect on colon cancer cell growth. In addition, neither recombinant protein affected the growth of non-malignant colonic fibroblast CCD-18Co cells. These findings suggest that serine proteases should be considered as important targets in investigating the potential chemopreventive role of BBI during the early stages of colorectal carcinogenesis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr A. Clemente, fax +34 958 57 27 53, email alfonso.clemente@eez.csic.es

References

Hide All
1Jemal, A, Siegel, R, Ward, E, et al. (2009) Cancer statistics, 2009. Cancer J Clin 59, 225249.
2Cummings, JH & Bingham, SA (1998) Fortnightly review – diet and the prevention of cancer. Br Med J 317, 16361640.
3Reddy, BS (2000) Novel approaches to the prevention of colon cancer by nutritional manipulation and chemoprevention. Cancer Epidemiol Biomark Prev 9, 239247.
4MacFarlane, AJ & Stover, PJ (2007) Factors in gastrointestinal cancers: convergence of genetic, nutritional and inflammatory. Nutr Rev 65, S157S166.
5Kennedy, AR, Billings, PC, Wan, XS, et al. (2002) Effects of Bowman–Birk inhibitor on rat colon carcinogenesis. Nutr Cancer 43, 174186.
6Clemente, A & Domoney, C (2006) Biological significance of polymorphism in plant protease inhibitors from the Bowman–Birk class. Curr Prot Pept Sci 7, 201216.
7Clemente, A & Domoney, C (2007) Therapeutic properties of legume protease inhibitors from the Bowman–Birk class. In Recent Progress in Medicinal Plants, pp. 397417 [Govil, JN, Singh, VK and Sharma, RK, editors]. vol. 20, Houston, TX: Studium Press.
8Clemente, A, Sonnante, G & Domoney, C (2011) Bowman–Birk inhibitors from legumes and human gastrointestinal health: current status and perspectives. Curr Prot Pept Sci 12, 358373.
9Chen, P, Rose, J, Love, R, et al. (1992) Reactive sites of an anticarcinogenic Bowman–Birk proteinase inhibitor are similar to other trypsin inhibitors. J Biol Chem 267, 19901994.
10Ramasarma, PR, Appu Rao, AG & Rao, DR (1995) Role of disulfide linkages in structure and activity of proteinase inhibitor from horsegram (Dolichos biflorus). Biochim Biophys Acta 1248, 3542.
11Trivedi, MV, Laurence, JS & Siahann, TJ (2009) The role of thiols and disulfides on protein stability. Curr Prot Pept Sci 10, 614625.
12Clemente, A, Jimenez, E, Marín-Manzano, MC, et al. (2008) Active Bowman–Birk inhibitors survive gastrointestinal digestion at the terminal ileum of pigs fed chickpea-based diets. J Sci Food Agric 88, 523531.
13Marín-Manzano, MC, Ruiz, R, Jimenez, E, et al. (2009) Anti-carcinogenic soyabean Bowman–Birk inhibitors survive faecal fermentation in their active form and do not affect the microbiota composition in vitro. Br J Nutr 101, 967971.
14Kennedy, AR, Szuhaj, BF, Newberne, PM, et al. (1993) Preparation and production of a cancer chemopreventive agent, Bowman–Birk inhibitor concentrate. Nutr Cancer 19, 281302.
15Clemente, A, Moreno, J, Marín-Manzano, MC, et al. (2010) The cytotoxic effect of Bowman–Birk isoinhibitors from soybean on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol Nutr Food Res 54, 396405.
16Clemente, A, Gee, JM, Johnson, IT, et al. (2005) Pea (Pisum sativum L.) protease inhibitors from the Bowman–Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro. J Agric Food Chem 53, 89798986.
17Caccialupi, P, Ceci, LR, Siciliano, RA, et al. (2010) Bowman–Birk inhibitors in lentil: heterologous expression, functional characterisation and anti-proliferative properties in human colon cancer cells. Food Chem 120, 10581066.
18Domoney, C. (1999) Inhibitors of legume seeds. In Seed Proteins, pp. 635655 [Shewry, PR and Casey, R, editors]. The Netherlands: Kluwer Academic Publishers.
19Domoney, C, Welham, T, Ellis, N, et al. (2002) Three classes of proteinase inhibitor gene have distinct but overlapping patterns of expression in Pisum sativum plants. Plant Mol Biol 48, 319329.
20Ho, S, Hunt, H, Horton, R, et al. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 5159.
21Domoney, C & Welham, T (1992) Trypsin inhibitors in Pisum: variation in amount and pattern of accumulation in developing seed. Seed Sci Res 2, 147154.
22Clemente, A, MacKenzie, DA, Jeenes, DJ, et al. (2004) The effect of variation within inhibitory domains on the activity of pea protease inhibitors from the Bowman–Birk class. Protein Express Purif 36, 106114.
23Copeland, RA, Lombardo, D, Giannaras, J, et al. (1995) Estimating K i values for tight-binding inhibitors from dose-response plots. Bioorg Med Chem Lett 5, 19471952.
24Domoney, C, Welham, T, Sidebottom, C, et al. (1995) Multiple isoforms of Pisum trypsin inhibitors result from modification of two primary gene products. FEBS Lett 360, 1520.
25Schechter, I & Berger, A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27, 157162.
26Damaso, MC, Almeida, MS, Kurtenbach, E, et al. (2003) Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl Environ Microbiol 69, 60646072.
27Chen, Z, Wang, D, Cong, Y, et al. (2011) Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 89, 281291.
28Scarafoni, A, Consonni, A, Galbusera, V, et al. (2008) Identification and characterization of a Bowman–Birk inhibitor active towards trypsin but not chymotrypsin in Lupinus albus seeds. Phytochem 69, 18201825.
29Kennedy, AR (1998) Chemopreventive agents: protease inhibitors. Pharmacol Ther 78, 167209.
30Kennedy, AR (1998) The Bowman–Birk inhibitor from soybeans as an anticarcinogenic agent. Am J Clin Nutr 68, 1406s1412s.
31Singh, RR & Appu Rao, AG (2002) Reductive unfolding and oxidative refolding of a Bowman–Birk inhibitor from horsegram seeds (Dolichos biflorus): evidence for “hyperreactive” disulfide bonds and rate-limiting nature of disulfide isomerisation in folding. Biochim Biophys Acta 1597, 280291.
32Volpicella, M, Ceci, LR, Cordewener, J, et al. (2003) Properties of purified gut trypsin from Helicoverpa zea, adapted to protease inhibitors. Eur J Biochem 270, 1019.
33Yavelow, J, Collins, M, Birk, Y, et al. (1985) Nanomolar concentrations of Bowman–Birk soybean protease inhibitor suppress X-ray induced transformation in vitro. Proc Natl Acad Sci U S A 82, 53955399.

Keywords

The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition

  • Alfonso Clemente (a1), M. Carmen Marín-Manzano (a1), Elisabeth Jiménez (a1), M. Carmen Arques (a1) and Claire Domoney (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed