Skip to main content Accessibility help
×
Home

Antioxidant micronutrient supplementation increases erythrocyte membrane fluidity in adults from a rural Chinese community

  • Xiu-Xia Han (a1), Ming Zhang (a2), Ai-Guo Ma (a1), Sheng Ge (a3), Xue-Xiang Shi (a4), Yong-Ye Sun (a1), Qiu-Zhen Wang (a1) and Hui Liang (a1)...

Abstract

The objective of the present study was to investigate age-related differences in erythrocyte membrane fluidity (EMF) and changes in antioxidant capacity following supplementation. A total of seventy-four children were randomly divided into two groups: group A1 was the placebo-controlled group and group A2 was supplemented daily with 600 μg retinol, 1·0 mg β-carotene, 100 mg tocopherol, 300 mg ascorbic acid and 200 μg Se. A total of ninety young people were randomly divided into B1 and B2 groups, and ninety-one elderly subjects were divided into C1 and C2 groups. Groups B1 and C1 were placebo-controlled groups, and groups B2 and C2 were daily supplemented with 900 μg retinol, 1·5 mg β-carotene, 200 mg tocopherol, 500 mg ascorbic acid and 400 μg Se. Results showed that plasma malondialdehyde (MDA) was 5·35 μmol/l in children, which was lower than in young and elderly people. The MDA levels of the young and elderly individuals in the treated groups were significantly lower compared with the control groups, but the supplementation did not alter MDA levels in children. At baseline, there was a lower value of polarisation (ρ) and microviscosity (η) in children, indicating a higher EMF, than in both the young and elderly subjects. After the 2-month trial, the ρ and η values of young and elderly subjects in the treated groups decreased significantly in comparison with the placebo groups, indicating an increase in EMF. In conclusion, there was a background of higher MDA levels and lower EMF in young and elderly people than in children, which could be improved by antioxidant supplementation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Antioxidant micronutrient supplementation increases erythrocyte membrane fluidity in adults from a rural Chinese community
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Antioxidant micronutrient supplementation increases erythrocyte membrane fluidity in adults from a rural Chinese community
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Antioxidant micronutrient supplementation increases erythrocyte membrane fluidity in adults from a rural Chinese community
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor A.-G. Ma, fax +86 532 83812434, email aiguom502@hotmail.com

References

Hide All
1 Rice-Evans, CA, Diplock, AT, Symons, MCR, et al. (1991) Techniques in free radical research. In Laboratory Techniques in Biochemistry and Molecular Biology, pp. 118 [Burdon, RH and Knippenberg, PH, editors]. London: Elsevier.
2 López-Revuelta, A, Sánchez-Gallego, JI, Hernández-Hernández, A, et al. (2005) Increase in vulnerability to oxidative damage in cholesterol-modified erythrocytes exposed to t-BuOOH. Biochim Biophys Acta 1734, 7485.
3 Li, Y, Qian, ZJ, Ryu, B, et al. (2009) Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg Med Chem 17, 19631973.
4 Babu, GN, Kumar, A, Chandra, R, et al. (2008) Oxidant–antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Int 52, 12841289.
5 EI-Rashidy, FH, AI-Turk, WA & Stohs, SJ (1984) Glutathione, glutathione reductase and glutathione S transferase activities in erythrocytes and lymphocytes in chronic renal disease. Res Commun Chem Pathol Pharmacol 44, 423430.
6 Miguel, A, Miguel, A & Linares, M (1988) Evidence of an increased susceptibility to lipid peroxidation in red blood cells of chronic renal failure patients. Nephron 50, 6465.
7 Southorn, PA & Powis, G (1988) Free radicals in medicine. II. Involvement in human disease. Mayo Clin Proc 63, 390408.
8 Goi, G, Cazzola, R, Tringali, C, et al. (2005) Erythrocyte membrane alterations during ageing affect beta-d-glucuronidase and neutral sialidase in elderly healthy subjects. Exp Gerontol 40, 219225.
9 Alpsoy, L, Yildirim, A & Agar, G (2009) The antioxidant effects of vitamin A, C, and E on aflatoxin B1-induced oxidative stress in human lymphocytes. Toxicol Ind Health 25, 121127.
10 Seyedrezazadeh, E, Ostadrahimi, A, Mahboob, S, et al. (2008) Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology 13, 294298.
11 Mayne, ST (2003) Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr 133, 933S940S.
12 Brosche, T & Platt, D (1990) Decrease of cholesterol concentration in human erythrocyte ghosts in elderly age. Exp Gerontol 25, 2328.
13 Prisco, D, Rogasi, PG, Paniccia, R, et al. (1991) Age-related changes in red blood lipids. Angiology 42, 316322.
14 Knight, JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28, 331346.
15 Droge, W (2003) Oxidative stress and aging. Adv Exp Med Biol 543, 191200.
16 Davydov, VV, Dobaeva, NM & Bozhkov, AI (2004) Possible role of alteration of aldehyde's scavenger enzymes during aging. Exp Gerontol 39, 1116.
17 Comstock, GW, Norkus, EP, Hoffman, SC, et al. (1995) Stability of ascorbic acid, carotenoids, retinol and tocopherol in plasma stored at − 70 degrees C for 4 years. Cancer Epidemiol Biomarkers Prev 4, 505507.
18 Hess, D, Keller, HE, Oberlin, B, et al. (1991) Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid-chromatography on reversed phase. Int J Vit Nutr Res 61, 232238.
19 Pressman, EK, Cavanaugh, JL, Mingione, M, et al. (2003) Effects of maternal antioxidant supplementation on maternal and fetal antioxidant levels: a randomized, double-blind study. Am J Obstet Gynecol 189, 17201725.
20 USDHHS, Public Health Services IV (1979) Analytical Methods, Vitamin C. pp. 1719. Atlanta: Centers for Disease Control and Prevention.
21 Koh, T-S & Benson, TH (1983) Critical re-appraisal of fluorometric method for determination of selenium in biological materials. J Assoc Off Anal Chem 66, 918926.
22 Durak, I, Canbolat, O, Kavutcu, M, et al. (1996) Activities of total, cytoplasmic and mitochondrial superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. J Clin Lab Anal 10, 1720.
23 Avci, A, Atli, T, Ergüder, IB, et al. (2008) Effects of garlic consumption on plasma and erythrocyte antioxidant parameters in elderly subjects. Gerontology 54, 173176.
24 Steck, TL & Kant, JA (1974) Preparation of impermeable ghosts and inside out vesicles from human erythrocyte membranes. In Methods in Enzymology, pp. 172173 [Colowkck, SP and Kaplaneditors, NO, editors]. London: Academic Press.
25 Raccah, D, Dadoun, F, Coste, T, et al. (1996) Decreased Na/K ATPase ouabain binding sites in red blood cells of patients with insulin-depend diabetes and healthy north African control subjects:relationship with insult and diabetic neuropathy. Horm Metab Res 28, 128132.
26 Lowry, OH, Rosebrough, NJ, Farr, AL, et al. (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193, 265275.
27 Chadha, VD & Dhawan, DK (2009) Membrane fluidity and surface changes during initiation of 1,2-dimethylhydrazine-induced colon carcinogenesis: protection by zinc. Oncol Res 18, 1723.
28 Aricha, B, Fishov, I, Cohen, Z, et al. (2004) Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 186, 4638–4344.
29 Chauhan, VP, Chauhan, A & Wegiel, J (2001) Fibrillar amyloid beta-protein forms a membrane-like hydrophobic domain. Neuroreport 12, 587590.
30 Tang, X, Xia, Z & Yu, J (2007) An experimental study of hemolysis induced by onion (Allium cepa) poisoning in dogs. J Vet Pharmacol Therap 31, 143149.
31 Ma, AG, Schoutenm, EG, Wangm, Y, et al. (2009) Micronutrient status in anemic and non-anemic Chinese women in the third trimester of pregnancy. Asia Pac J Clin Nutr 18, 4147.
32 Drewel, BT, Giraud, DW, Davy, SR, et al. (2006) Less than adequate vitamin E status observed in a group of preschool boys and girls living in the United States. J Nutr Biochem 17, 132138.
33 Rizvi, SI & Maurya, PK (2007) Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci 1100, 373382.
34 Berzosa, C, Gómez-Trullén, EM, Piedrafita, E, et al. (2011) Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans. Eur J Appl Physiol 111, 11271133.
35 Maurya, PK & Rizvi, SI (2009) Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Nat Prod Res 23, 10721079.
36 Soto-Arriaza, MA, Sotomayor, CP & Lissi, EA (2008) Relationship between lipid peroxidation and rigidity in l-alpha-phosphatidylcholine-DPPC vesicles. J Colloid Interface Sci 323, 7074.
37 Spengler, MI, Bertoluzzo, SM, Catalani, G, et al. (2008) Study on membrane fluidity and erythrocyte aggregation in equine, bovine and human species. Clin Hemorheol Microcirc 38, 171176.
38 Kaneko, T, Matsui, H, Shimokawa, O, et al. (2007) Cellular membrane fluidity measurement by fluorescence polarization in indomethacin-induced gastric cellular injury in vitro. J Gastroenterol 42, 939946.
39 Yang, YG (2010) Population and environment sustainable development in rural China. J Shandong Inst Min Technol (Social Science) 3, 5556.
40 Ma, AG, Schouten, EG, Zhang, FZ, et al. (2008) Retinol and riboflavin supplementation decreases the prevalence of anemia in Chinese pregnant women taking iron and folic acid supplements. J Nutr 138, 19461950.
41 Rizvi, SI, Pandey, KB, Jha, R, et al. (2009) Ascorbate recycling by erythrocytes during aging in humans. Rejuvenation Res 12, 36.
42 Clemens, MR & Waller, HD (1987) Lipid peroxidation in erythrocytes. Chem Phys Lipids 45, 251268.
43 Oh, HY, Lim, S, Lee, JM, et al. (2007) A combination of soy isoflavone supplementation and exercise improves lipid profiles and protects antioxidant defense-systems against exercise-induced oxidative stress in ovariectomized rats. Biofactors 29, 175185.
44 Harris, DE (1992) Regulation of antioxidant enzymes. FASEB J 6, 26752683.
45 Liu, MJ, Li, JX, Guo, HZ, et al. (2003) The effects of verbascoside on plasma lipid peroxidation level and erythrocyte membrane fluidity during immobilization in rabbits: a time course study. Life Sci 73, 883892.
46 Erden-Inal, M, Sunal, E & Kanbak, G (2002) Age-related changes in the glutathione redox system. Cell Biochem Funct 20, 6166.
47 Ruiz-Ramos, M, Vargas, LA, Fortoul Van der Goes, TI, et al. (2010) Supplementation of ascorbic acid and alpha-tocopherol is useful to preventing bone loss linked to oxidative stress in elderly. J Nutr Health Aging 14, 467472.
48 McCance, DR, Holmes, VA, Maresh, MJ, et al. (2010) Vitamins C and E for prevention of pre-eclampsia in women with type 1 diabetes (DAPIT): a randomised placebo-controlled trial. Lancet 376, 259266.
49 Hopkins, MH, Fedirko, V, Jones, DP, et al. (2010) Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiol Biomarkers Prev 19, 850858.
50 Ferrer, MD, Tauler, P, Sureda, A, et al. (2010) Variegate porphyria induces plasma and neutrophil oxidative stress: effects of dietary supplementation with vitamins E and C. Br J Nutr 103, 6976.
51 Mydlik, M & Derzsiová, K (2008) Vitamins and quality of life in hemodialysis patients. J Nephrol 21, S129S133.
52 Sangeetha, P, Balu, M, Haripriya, D, et al. (2005) Age associated changes in erythrocyte membrane surface charge: modulatory role of grape seed proanthocyanidins. Exp Gerontol 40, 820828.
53 Brzeszczynska, J, Pieniazek, A, Gwozdzinski, L, et al. (2008) Structural alterations of erythrocyte membrane components induced by exhaustive exercise. Appl Physiol Nutr Metab 33, 12231231.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed