Skip to main content Accessibility help

Second language learning success revealed by brain networks*

  • PING LI (a1) and ANGELA GRANT (a1)


A recent movement in cognitive neuroscience is the study of brain networks through functional and effective connectivity. The brain networks approach has already found its influences in the study of the neurobiology of language, but has yet to impact research in the neurocognition of bilingualism and second language. In this article, we briefly review some preliminary evidence in this emerging field and suggest that the understanding of the dynamic changes in brain networks enables us to capture second language learning success, thereby providing new insights into the neural bases of individual differences, neuroplasticity, and bilingualism.


Corresponding author

Address for correspondence: Ping Li, Department of Psychology and Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA, 16802 USA


Hide All

We thank Jubin Abutalebi, Shin-Yi Fang, Jennifer Legault, Jing Yang, and members of the Brain, Language, and Computation Lab for comments and suggestions on an earlier draft of this manuscript. This work was supported by grants from the National Science Foundation (BCS-1157220, BCS-1338946).



Hide All
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.
Baddeley, A. (2003a). Working Memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829839.
Baddeley, A. (2003b). Working memory and language: an overview. Journal of Communication Disorders, 36, 189208.
Baddeley, A. D., Gathercole, S. E., & Papagno, C. (1998). The phonological loop as a language learning device, Psychological Review, 105, 158173.
Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15, 200209.
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108, 76417646.
Bates, E. (1999). Plasticity, Localization and Language Development. In Broman, S. H. & Fletcher, J. M. (eds.), The changing nervous system: Neurobehavioral consequences of early brain disorders, pp. 214253. New York, NY: Oxford University Press.
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14, 277–90.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198.
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A neural interactive location for multilingual talent. Cortex, 49, 605608.
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness. Cambridge, MA: MIT Press.
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18, 120–6.
Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press.
Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326, 399403.
García-Pentón, L., Pérez Fernández, A., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495504.
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63, 310319.
Gates, K. M., Molenaar, P., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fMRI connectivity mapping: an alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50, 11181125.
Gates, K. M., Molenaar, P. C. M., Hillary, F. G., & Slobounov, S. (2011). Extended unified SEM approach for modeling event-related fMRI data. NeuroImage, 54, 11511158.
Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17, 575–82.
Golestani, N., & Pallier, C. (2007). Anatomical correlates of foreign speech sound production. Cerebral Cortex, 17, 929934.
Grant, A., Fang, S., & Li, P. Second language lexical development and cognitive control: A longitudinal fMRI study. Brain and Language, 144, 3547.
Hernandez, A. E. (2013). The Bilingual Brain. New York, NY: Oxford University Press.
Hernandez, A. E., & Li, P. (2007). Age of Acquisition: Its Neural and Computational Mechanisms. Psychological Bulletin, 133, 638650.
Li, P. (2015). Bilingualism as a dynamic process. In MacWhinney, B. & O'Grady, W. (eds.), Handbook of language emergence, pp. 511536. Malden, MA: John Wiley & Sons, Inc.
Li, P., & Green, D. (2007). Neurocognitive approaches to bilingualism: Asian languages. A special issue of Bilingualism: Language and Cognition, 10, 117210.
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324.
Li, P., & Zhao, X. (2013). Self-organizing map models of language acquisition. Frontiers in Psychology, 4, doi: 10.3389/fpsyg.2013.00828
Li, P., & Zhao, X. (2015). Computational modeling of bilingual language acquisition and processing: conceptual and methodological considerations. In Schwieter, J. W. (ed.), The Cambridge handbook of bilingual processing. Cambridge, UK: Cambridge University Press.
McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: The MIT Press.
Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15, 124.
Miyake, A., & Friedman, N. (1998). Individual differences in second language proficiency: Working memory as language aptitude. In Healy, A. & Bourne, L. (eds.), Foreign language learning: Psycholinguistics studies on training and retention, pp. 339364. Mahwah, NJ: Lawrence Erlbaum.
O'Brien, I., Segalowitz, N., Collentine, J., & Freed, B. (2006). Phonological memory and lexical, narrative, and grammatical skills in second language oral production by adult learners. Applied Psycholinguistics, 27, 377402.
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855863.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52, 10591069.
Rumelhart, D. E. (1989). The Architecture of Mind: A Connectionist Approach. In Posner, M. (ed.), Foundations of cognitive science, pp. 298312. Cambridge, MA: MIT Press.
Sheppard, J. P., Wang, J. P., & Wong, P. C. (2012). Large-scale cortical network properties predict future sound-to-word learning success. Journal of Cognitive Neuroscience, 24, 10871103.
Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.
Stein, M., Winkler, C., Kaiser, A. & Dierks, T. (2014). Structural brain changes related to bilingualism: Does immersion make a difference? Frontiers in Psychology, 5: 1116. doi: 10.3389/fpsyg.2014.01116.
Tu, L., Wang, J., Abutalebi, J., Jiang, B., Pan, X., Li, M., Gao, W., Yang, Y., Liang, B., Lu, Z., & Huang, R. (2015). Language exposure induced neuroplasticity in the bilingual brain: A follow-up fMRI study. Cortex, 64, 819.
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience, 31, 1857818589.
Ventura-Campos, N., Sanjuán, A., González, J., Palomar-García, M.-Á., Rodríguez-Pujadas, A., Sebastián- Gallés, N., Deco, G., & Ávila, C. (2013). Spontaneous brain activity predicts learning ability of foreign sounds. The Journal of Neuroscience, 33, 9295–305.
Veroude, K., Norris, D. G., Shumskaya, E., Gullberg, M., & Indefrey, P. (2010). Functional connectivity between brain regions involved in learning words of a new language. Brain and Language, 113, 2127.
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). fMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15, 10191027.
Wong, P. C., Perrachione, T. K., & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults, Human Brain Mapping, 28, 10, 9951006.
Xiang, H., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2012). Language aptitude, working memory, and IQ in the perisylvian language network. Language Learning, 62, 110130.
Yang, J., & Li, P. (2012). Brain networks of explicit and implicit learning. PLoS One, 7, e42993. doi:10.1371/journal.pone.0042993
Yang, J., Gates, K., Molenaar, P., & Li, P. (2015). Neural changes underlying successful second language word learning: An fMRI study. Journal of Neurolinguistics, 33, 2949.
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53, 11971207.
Zhang, L., Xi, J., Xu, G., Shu, H., Wang, X., & Li, P. (2011). Cortical dynamics of acoustic and phonological processing in speech perception. PLoS One, 6, e20963. doi:10.1371/journal.pone.0020963.


Related content

Powered by UNSILO

Second language learning success revealed by brain networks*

  • PING LI (a1) and ANGELA GRANT (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.