Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T14:32:51.444Z Has data issue: false hasContentIssue false

Modelling bilingual lexical processing: A research agenda and desiderabilia

Published online by Cambridge University Press:  17 September 2018

TON DIJKSTRA*
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
ALEXANDER WAHL
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
FRANKA BUYTENHUIJS
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
NINO VAN HALEM
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
ZINA AL-JIBOURI
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
MARCEL DE KORTE
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
STEVEN REKKÉ
Affiliation:
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen
*
Address for correspondence: Ton Dijkstra, Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Montessorilaan 3, 6525 HR Nijmegen, The Netherlandst.dijkstra@donders.ru.nl

Extract

Like the BIA model (Dijkstra & van Heuven, 1998; van Heuven, Dijkstra & Grainger, 1998) and the BIA+ model (Dijkstra & van Heuven, 2002), the Multilink model is a symbolic, localist-connectionist, interactive model for lexical processing in the visual domain. In our view, the symbolic nature of Multilink makes it attractive and easily interpretable, even in relation to brain activity (Page, 2000, p. 501; 2017). Symbolic localist-connectionist models have a long tradition and have been applied to many different areas of cognitive research (e.g., Grainger & Jacobs, 1998). As a consequence, a lot is known about their properties and limitations (e.g., Bowers, 2009). These models can also easily be organized hierarchically in a cognitive functional way, and they have a reasonable degree of flexibility while still being falsifiable. Thus, despite the availability of other sophisticated frameworks for modeling language processes, a lot can still be gained from localist models.

Type
Authors response
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The authors thank Aaron van Geffen, Randi Goertz, Erik Lormans, and Ardi Roelofs for valuable theoretical discussions and/or help in simulations. They also thank Eva van Assche, Nicolas Dirix, Wouter Duyck, and Annette De Groot for kindly making available empirical data for simulation purposes.

References

Bard, E. G. (1990). Competition, lateral inhibition, and frequency: Comments on the chapters by Frauenfelder and Peeters, Marslen-Wilson, and others. In Altmann, G.T.M. (Ed.), Cognitive models of speech processing: Psycholinguistic and computational perspectives. Cambridge MA: MIT Press (pp. 185210).Google Scholar
Beauvillain, C., & Grainger, J. (1987). Accessing interlexical homographs: Some limitations of a language selective access. Journal of Memory and Language, 672, 658672.Google Scholar
Biloushchenko, I. (2017). How trilinguals process cognates and interlingual homographs: the effect of activation, decision, and cognitive control. Doctoral thesis, University of Antwerp.Google Scholar
Bowers, J. S. (2009). On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience. Psychological Review, 116 (1), 220251. doi:10.1037/a0014462Google Scholar
Casaponsa, A., Carreiras, M., & Duñabeitia, J. A. (2015). How do bilinguals identify the language of the word they read? Brain Research, 1624, 153166.Google Scholar
Christoffels, I. K., Ganuschchak, L., & Koester, D. (2013). Language conflict in translation: An ERP study of translation production. Journal of Cognitive Psychology, 25, 646664.Google Scholar
Costa, A., & Pickering, M. (2018). The role of learning on bilinguals’ lexical architecture: Beyond separated vs. integrated lexicons. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000809Google Scholar
Declerck, M., Meade, G., & Grainger, J. (2018). On keeping cool: The role of inhibition in bilingual word recognition. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000676Google Scholar
De Bruin, A. M. T., Roelofs, A. P. A., Dijkstra, T., & FitzPatrick, I. (2014). Domain-general inhibition areas of the brain are involved in language switching: fMRI evidence from trilingual speakers. NeuroImage, 90, 348359.Google Scholar
De Deijne, S., & Storms, G. (2008). Word associations: Norms for 1,424 words in a continuous task. Behavior Research Methods, 40, 198205.Google Scholar
Dijkstra, T., Haga, F., Bijsterveld, A., & Sprinkhuizen-Kuyper, I. (2011). Assessing mechanisms of inhibition in localist and distributed connectionist models by simulating L2 word acquisition. In Altarriba, J. & Isurin, L. (Eds.), Memory and Language: Theoretical and Applied Approaches to Bilingualism. John Benjamins.Google Scholar
Dijkstra, T., Hilberink-Schulpen, B., & van Heuven, W. J. B. (2010). Repetition and masked form priming within and between languages using word and nonword neighbors. Bilingualism: Language and Cognition, 13, 341357.Google Scholar
Dijkstra, T., Miwa, K., Brummelhuis, B., Sappelli, M., & Baayen, H. (2010). How cross-language similarity affects cognate recognition. Journal of Memory and Language, 62, 284301.Google Scholar
Dijkstra, T., & Rekké, S. (2010). Towards a localist-connectionist model for word translation. The Mental Lexicon, 5 (3), 403422. Special issue on Methodological and analytic frontiers in lexical research, edited by Jarema, G., Libben, G., & Westbury, Ch..Google Scholar
Dijkstra, T., Roelofs, A., & Fieuws, S. (1995). Orthographic effects on phoneme monitoring. Canadian Journal of Experimental Psychology, 49 (2), 264271.Google Scholar
Dijkstra, T., Van Hell, J. G., & Brenders, P. (2015). Sentence context effects in bilingual word recognition: cognate processing, sentence language, and semantic constraint. Bilingualism: Language and Cognition, 18, 597613.Google Scholar
Dijkstra, T., & van Heuven, W. J. B. (1998). The BIA-model and bilingual word recognition. In Grainger, J. & Jacobs, A. (Eds.), Localist Connectionist Approaches to Human Cognition (pp. 189225). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Dijkstra, T., & van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5, 175197.Google Scholar
Duyck, W., Vanderelst, D., Desmet, T., & Hartsuiker, R. (2008). The frequency effect in second-language visual word recognition: evidence against a language-selective rank hypothesis. Psychonomic Bulletin and Review, 15 (4), 850855.Google Scholar
Goertz, R., Wahl, A., & Dijkstra, A. (in preparation). Translating interlingual homographs: Empirical and simulation data. [working title]Google Scholar
Gollan, T. H., Forster, K. I., & Frost, R. (1997). Translation priming with different scripts: Masked priming with cognates and noncognates in Hebrew-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 11221139.Google Scholar
Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always a means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58, 787814.Google Scholar
Goral, M. (2018). The bilingual mental lexicon beyond Dutch-English written words. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000743Google Scholar
Grainger, J., Declerck, M., & Marzouki, Y. (2017). On national flags and language tags: Effects of flag-language congruency in bilingual word recognition. Acta Psychologica, 178, 1217.Google Scholar
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518565.Google Scholar
Grainger, J., & Jacobs, A. M. (Eds.). (1998). Localist Connectionist Approaches to Human Cognition. Mahwah, NJ, USA: Lawrence Erlbaum Associates.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.Google Scholar
Hoversten, L. J., Brothers, T., Swaab, T. Y., & Traxler, M. J. (2015). Language Membership Identification Precedes Semantic Access: Suppression during Bilingual Word Recognition. Journal of Cognitive Neuroscience 27, pp. 21082116. doi:10.1162/jocn_a_00844Google Scholar
Iakovleva, T., Piasecki, A. E., & Dijkstra, A. F. J. (2015). Are you reading what I am reading? The impact of contrasting alphabetic scripts. In Pirelli, V., Marzi, C., & Ferro, M. (Eds.), NetWordS 2015. Word Knowledge and Word Usage. Representations and Processes in the Mental Lexicon (pp. 112116).Google Scholar
Ivanova, I., & Kleinman, D. (2018). Multilink for bilingual language production. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000718Google Scholar
Jacobs, A. M., & Grainger, J. (1992). Testing a semistochastic variant of the interactive activation model in different word recognition experiments. Journal of Experimental Psychology: Human Perception and Performance, 18, 11741188.Google Scholar
Jacobs, A. M., & Grainger, J. (1994). Models of visual word recognition: Sampling the state of the art. Journal of Experimental Psychology: Human Perception and Performance, 20, 13111334.Google Scholar
Jiang, N. (2018). Phonology-based bilingual activation among different-script bilinguals? Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000664Google Scholar
Johns, M. A., & Putnam, M. T. (2018). Language membership as a gradient emergent feature. Bilingualism: Language and Cognition. https://doi.org/10.1017/S136672891800072XGoogle Scholar
Kim, J., & Davis, C. (2003). Task effects in masked cross-script translation and phonological priming. Journal of Memory and Language, 49, 484499.Google Scholar
Kim, S. (2017). The cross-language activation of Korean and English in a monolingual setting. Qualifying Paper, The University of Maryland, March 27, 2017.Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149174.Google Scholar
Kroll, J. F., van Hell, J. G., Tokowicz, N., & Green, D. W. (2010). The Revised Hierarchical Model: A critical review and assessment. Bilingualism: Language and Cognition, 13, 373381.Google Scholar
Lauro, J. G., & Schwartz, A. I. (2017). Bilingual non-selective lexical access in sentence contexts: A meta-analytic review. The Journal of Memory and Language, 92, 217233.Google Scholar
Lemhoefer, K., Dijkstra, A., Schriefers, H., Baayen, H., Grainger, J., & Zwitserlood, P. (2008). Native language influences on word recognition in a second language: A mega-study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1231.Google Scholar
Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. Cybernetics and Control Theory, 10, 707–10.Google Scholar
Léwy, N., & Grosjean, F. (2008). The Léwy and Grosjean BIMOLA model. In Grosjean, F. (ed.), Studying bilinguals, pp. 201210. Oxford: Oxford University Press.Google Scholar
Libben, M., Goral, M., & Libben, G. (2017). (eds.), Bilingualism: A Framework for Understanding the Mental Lexicon. John Benjamins.Google Scholar
Li, P., & Grant, A. (2018). Scaling up: How computational models can propel bilingualism research forward. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000755Google Scholar
Meade, G., & Dijkstra, A. (2017). Mechanisms underlying word learning in second language acquisition. In Libben, M., Goral, M., & Libben, G. (eds.), Bilingualism: A Framework for Understanding the Mental Lexicon. John Benjamins (pp. 4971).Google Scholar
Mishra, R. K. (2018). A few suggestions on broadening the cross-linguistic relevance of the Multilink model. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000834Google Scholar
Miwa, K., Dijkstra, T., Bolger, P., & Baayen, R. H. (2014). Reading English with Japanese in mind: Effects of frequency, phonology, and meaning in different-script bilinguals. Bilingualism: Language and Cognition, 17, 445463. doi: 10.1017/S1366728913000576Google Scholar
Morford, J. P., Occhino-Kehoe, C., Pinar, P., Wilkinson, E., & Kroll, J. F. (2015). The time course of cross-language activation in deaf ASL–English bilinguals. Bilingualism: Language & Cognition, 337350.Google Scholar
Nakayama, M., Sears, C. R., Hino, Y., & Lupker, S. J. (2012). Cross-script phonological priming for Japanese-English bilinguals: Evidence for integrated phonological representations. Language and Cognitive Processes, 27, 15631583. DOI: 10.1080/01690965.2011.606669Google Scholar
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms. http://www.usf.edu/FreeAssociation/.Google Scholar
Ormel, E., Hermans, D., Knoors, H., & Verhoeven, L. (2012). Cross-language effects in visual word recognition: The case of bilingual deaf children. Bilingualism: Language and Cognition, 15, 288303.Google Scholar
Page, M. (2000). Connectionist modelling in psychology: A localist manifesto. Behavioral and Brain Sciences, 23, 443512.Google Scholar
Page, M. (2017). Localist models are compatible with information measures, sparseness indices, and complementary-learning systems in the brain. Language, Cognition, and Neuroscience, 32, 366379.Google Scholar
Peeters, D., & Dijkstra, T. (2017). Sustained inhibition of the native language in bilingual language production: A virtual reality approach. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728917000396Google Scholar
Post da Silveira, A. (2016). Word stress in second language word recognition and production. Doctoral thesis Radboud University, Nijmegen, the Netherlands.Google Scholar
Pruijn, L., Peacock, J., & Dijkstra, T. (in preparation). Mechanisms of word translation: Empirical and simulation data. [working title]Google Scholar
Sianipar, A., Middelburg, R., & Dijkstra, T. (2015). When feelings arise with meanings: How emotion and meaning of a native language affect second language processing in adult learners. PLoS ONE, 10 (12): e0144576. doi:10.1371/journal.pone.0144576Google Scholar
Shook, A., & Marian, V. (2013). The Bilingual Language Interaction Network for Comprehension of Speech. Bilingualism: Language and Cognition, 16, 304324. doi:10.1017/S1366728912000466.Google Scholar
Thomas, M. S. C., & van Heuven, W. J. B. (2005). Computational models of bilingual comprehension. In Kroll, J.F. & De Groot, A.M.B. (Eds.), Handbook of Bilingualism: Psycholinguistic Approaches (pp. 202225). Oxford University Press.Google Scholar
Tokowicz, N. (2018). The role of errors and individual differences in bilingual translation. Bilingualism: Language and Cognition. https://doi.org/10.1017/S136672891800069XGoogle Scholar
Tokowicz, N., & Kroll, J. F. (2007). Number of meanings and concreteness: Consequences of ambiguity within and across languages. Language and Cognitive Processes, 22, 727779.Google Scholar
van Assche, E., Drieghe, D., Duyck, W., Welvaert, M., and Hartsuiker, R. J. (2011). The influence of semantic constraints on bilingual word recognition during sentence reading. Journal of Memory and Language, 64, 88107.Google Scholar
van Assche, E., Duyck, W., Hartsuiker, R. J., and Diependaele, K. (2009). Does bilingualism change native-language reading? Cognate effects in a sentence context. Psychological Science, 20, 923927.Google Scholar
Van Hell, J. (2018). Words go only so far: Linguistic context affects bilingual word processing. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000706Google Scholar
Van Hell, J. G., & De Groot, A. M. B. (1998). Conceptual representation in bilingual memory: Effects of concreteness and cognate status in word association. Bilingualism: Language and Cognition, 1, 193211.Google Scholar
van Heuven, W. J. B., & Wen, Y. (2018). The need for a universal computational model of bilingual word recognition and word translation. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728918000688Google Scholar
van Heuven, W. J. B., Dijkstra, A., & Grainger, J. (1998). Orthographic neighborhood effects in bilingual word recognition. Journal of Memory and Language, 39, 458483.Google Scholar
Van Kesteren, R., Dijkstra, T., & De Smedt, K. (2012). Markedness effects in Norwegian-English bilinguals: Task-dependent use of language-specific letters and bigrams. The Quarterly Journal of Experimental Psychology, 65, 21292154. DOI:10.1080/17470218.2012.679946Google Scholar
Vanlangendonck, F. (2012). Conflict in the bilingual brain: The case of cognates and false friends. Proceedings of the Master's programme Cognitive Neuroscience, 7, 6178.Google Scholar
Vanlangendonck, F., Peeters, D., Rueschemeyer, S.A., & Dijkstra, T. (submitted). Stimulus list composition can turn cognate facilitation effects into mirrored inhibition effects.Google Scholar
van Rijswijk, R. (2016). The strength of a weaker language: Language production and comprehension by Turkish heritage speakers in the Netherlands. Doctoral thesis Radboud University, Nijmegen, the Netherlands.Google Scholar
Wen, Y., & van Heuven, W. J. B. (2017). Non-cognate translation priming in masked priming lexical decision experiments: A meta-analysis. Psychonomic Bulletin & Review, 24 (3), 879886.Google Scholar
Wen, Y., & van Heuven, W. J. B. (2018). Limitations of translation activation in masked priming: Behavioural evidence from Chinese-English bilinguals and computational modelling. Journal of Memory and Language, 101, 8496. doi: 10.1016/j.jml.2018.03.004Google Scholar
Xiang, H., Dediu, D., Roberts, L., Van Oort, E., Norris, D., & Hagoort, P. (2012). The structural connectivity underpinning language aptitude, working memory and IQ in the perisylvian language network. Language Learning, 62 (Supplement S2), 110130. doi:10.1111/j.1467-9922.2012.00708.xGoogle Scholar
Xiang, H., Van Leeuwen, T. M., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2015). L2-proficiency-dependent laterality shift in structural connectivity of brain language pathways. Brain Connectivity, 5 (6), 349361. doi:10.1089/brain.2013.0199.Google Scholar
Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. International Journal of Bilingual Education and Bilingualism, 13, 505524.Google Scholar
Zhao, X., & Li, P. (2013). Simulating cross-language priming with a dynamic computational model of the lexicon. Bilingualism: Language and Cognition, 16, 288303.Google Scholar