Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T17:15:54.883Z Has data issue: false hasContentIssue false

NUMERICAL SIMULATION OF MHD STAGNATION POINT FLOW TOWARDS A HEATED AXISYMMETRIC SURFACE

Published online by Cambridge University Press:  05 December 2011

MUHAMMAD ASHRAF*
Affiliation:
Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan (email: mashraf_mul@yahoo.com)
M. ANWAR KAMAL
Affiliation:
Department of Mathematics, Al Kharj University, Al Kharj, Saudi Arabia
*
For correspondence; e-mail: mashraf_mul@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of stagnation point flow with heat transfer of an electrically conducting fluid impinging normally on a permeable axisymmetric surface in the presence of a uniform transverse magnetic field is analysed. The governing nonlinear differential equations and their associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. Comparison with previously published work shows good agreement. Effects of the injection–suction parameter, magnetic parameter and Prandtl number on the flow and thermal fields are presented. The investigations show that the wall shear stress and heat transfer rate from the surface increase with increased applied magnetic field. An increase in the velocity and thermal boundary layer thicknesses is observed with an increase in the wall injection, while the velocity and thermal boundary layers become thinner when increasing the wall suction and applied magnetic field.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2011

References

[1]Ariel, P. D., “Hiemenz flow in hydromagnetics”, Acta Mech. 103 (1994) 3143; doi:10.1007/BF01180216.CrossRefGoogle Scholar
[2]Aydın, O. and Kaya, A., “Laminar boundary layer flow over a horizontal permeable flat plate”, Appl. Math. Comput. 161 (2005) 229240; doi:10.1016/j.amc.2003.12.021.Google Scholar
[3]Chamkha, A. J. and Issa, C., “Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface”, Int. J. Numer. Methods Heat Fluid Flow 10 (2000) 432449; doi:10.1108/09615530010327404.CrossRefGoogle Scholar
[4]Deuflhard, P., “Order and stepsize control in extrapolation methods”, Numer. Math. 41 (1983) 399422; doi:10.1007/BF01418332.CrossRefGoogle Scholar
[5]Hiemenz, K., “Die Grenzschicht an einem in den gleichförmingen Flüssigkeitsstrom eingetauchten graden Kreiszylinder”, Dinglers Polytech. J. 326 (1911) 321324.Google Scholar
[6]Hildebrand, F. B., Introduction to numerical analysis (Tata McGraw-Hill, New Delhi, 1979).Google Scholar
[7]Homann, F., “Der Einfluss grosser Zähigkeit bei der Strömung um den zylinder und um die Kugel”, Z. Angew. Math. Mech. 16 (1936) 153164.CrossRefGoogle Scholar
[8]Mahapatra, T. R. and Gupta, A. S., “Magnetohydrodynamic stagnation-point flow towards a stretching sheet”, Acta Mech. 152 (2001) 191196; doi:10.1007/BF01176953.CrossRefGoogle Scholar
[9]Sharma, P. R. and Singh, G., “Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet”, J. Appl. Fluid Mech. 2 (2009) 1321.Google Scholar
[10]Wang, C. Y., “Stagnation flow towards a shrinking sheet”, Int. J. Non-Linear Mech. 43 (2008) 377382; doi:10.1016/j.ijnonlinmec.2007.12.021.CrossRefGoogle Scholar
[11]Wang, C. Y., “Stagnation slip flow and heat transfer on a moving plate”, Chem. Eng. Sci. 61 (2006) 76687672; doi:10.1016/j.ces.2006.09.003.CrossRefGoogle Scholar
[12]Wang, C. Y., “Impinging stagnation flows”, Phys. Fluids 30 (1987) 915917; doi:10.1063/1.866345.CrossRefGoogle Scholar