Skip to main content Accessibility help
×
Home

Thermal properties of Antarctic soils: wetting controls subsurface thermal state

  • Joseph S. Levy (a1) and Logan M. Schmidt (a1)

Abstract

Mineral soils in the McMurdo Dry Valleys (MDV), Antarctica, are commonly considered to be dry, and therefore to be good insulators with low thermal diffusivity values (~0.2 mm2 s-1). However, field measurements of soil moisture profiles with depth, coupled with observations of rapid ground ice melt, suggest that the thermal characteristics of MDV soils, and thus their resistance to thaw, may be spatially variable and strongly controlled by soil moisture content. The thermal conductivity, heat capacity and thermal diffusivity of 17 MDV soils were measured over a range of soil moisture conditions from dry to saturated. We found that thermal diffusivity varied by a factor of eight for these soils, despite the fact that they consist of members of only two soil groups. The thermal diffusivity of the soils increased in all cases with increasing soil moisture content, suggesting that permafrost and ground ice thaw in mineral soils may generate a positive thawing feedback in which wet soils conduct additional heat to depth, enhancing rates of permafrost thaw and thermokarst formation.

Copyright

Corresponding author

References

Hide All
Adlam, L.S., Balks, M.R., Seybold, C.A. & Campbell, D.I. 2010. Temporal and spatial variation in active layer depth in the McMurdo Sound region, Antarctica. Antarctic Science, 22, 10.1017/S0954102009990460.
Bockheim, J.G. 2010. Evolution of desert pavements and the vesicular layer in soils of the Transantarctic Mountains. Geomorphology, 118, 10.1016/j.geomorph.2010.02.012.
Bockheim, J.G., Campbell, I.B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 10.1002/ppp.588.
Bockheim, J.G., Prentice, M.L. & McLeod, M. 2008. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica. Arctic Antarctic and Alpine Research, 40, 10.1657/1523-0430(06-057)(BOCKHEIM)2.0.CO;2.
Caine, N. 2010. Recent hydrologic change in a Colorado alpine basin: an indicator of permafrost thaw? Annals of Glaciology, 51, 130134.
Campbell, D.I., MacCulloch, R.J.L. & Campbell, I.B. 1997a. Thermal regimes of some soils in the McMurdo Sound region, Antarctica. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-free landscapes. Leiden: Balkema, 4560.
Campbell, G.S. 1977. An introduction to environmental biophysics. Berlin: Springer, 159 pp.
Campbell, I.B., Claridge, G.G.C., Balks, M.R. & Campbell, D.I. 1997b. Moisture content in soils of the McMurdo Sound and Dry Valley region of Antarctica. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-free landscapes. Leiden: Balkema, 6176.
Campbell, I.B., Claridge, G.G.C., Campbell, D.I. & Balks, M.R. 1998. The soil environment of the McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72, 297322.
Chapman, W.L. & Walsh, J.E. 2007. A synthesis of Antarctic temperatures. Journal of Climate, 20, 10.1175/JCLI4236.1.
Dickson, J.L., Levy, J.S. & Head, J.W. 2015. Time-lapse imaging in polar environments. Eos, Transactions, American Geophysical Union, 95, 10.1002/2014EO460001.
Doran, P.T., Dana, G., Hastings, J.T. & Wharton, R.A. 1995. The McMurdo Long-Term Ecological Research (LTER): LTER automatic weather network (LAWN). Antarctic Journal of the United States, 30(5), 276280.
Fountain, A.G., Levy, J.S., Gooseff, M.N. & van Horn, D. 2014. The McMurdo Dry Valleys: a landscape on the threshold of change. Geomorphology, 225, 10.1016/j.geomorph.2014.03.044.
Fountain, A.G., Nylen, T.H., Monaghan, A., Basagic, H.J. & Bromwich, D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30, 10.1002/joc.1933.
Gooseff, M.N., Balser, A., Bowden, W.B. & Jones, J.B. 2011. Effects of hillslope thermokarst in Northern Alaska. Eos, Transactions, American Geophysical Union, 90, 10.1029/2009EO040001.
Hinzman, L.D., Goering, D.J. & Kane, D.L. 1998. A distributed thermal model for calculating soil temperature profile and depth of thaw in permafrost regions. Journal of Geophysical Research - Atmospheres, 103, 28 97528 991.
Hunt, H.W., Treonis, A.M., Wall, D.H. & Virginia, R.A. 2007. A mathematical model for variation in water-retention curves among sandy soils. Antarctic Science, 19, 10.1017/S0954102007000703.
Ikard, S.J., Gooseff, M.N., Barrett, J.E. & Takacs-Vesbach, C. 2009. Thermal characterisation of active layer across a soil moisture gradient in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 20, 10.1002/ppp.634.
Levy, J. 2012. How big are the McMurdo Dry Valleys? Estimating ice-free area using Landsat image data. Antarctic Science, 25, 10.1017/S0954102012000727.
Levy, J.S., Fountain, A.G., Welch, K.A. & Lyons, W.B. 2012. Hypersaline ‘wet patches’ in Taylor Valley, Antarctica. Geophysical Research Letters, 39, 10.1029/2012GL050898.
Levy, J.S., Fountain, A.G., Gooseff, M.N., Welch, K.A. & Lyons, W.B. 2011. Water tracks and permafrost in Taylor Valley, Antarctica: extensive and shallow groundwater connectivity in a cold desert ecosystem. Geological Society of America Bulletin, 123, 10.1130/B30436.1.
Levy, J.S., Fountain, A.G., O’Connor, J.E., Welch, K.A. & Lyons, W.B. 2013a. Garwood Valley, Antarctica: a new record of Last Glacial Maximum to Holocene glaciofluvial processes in the McMurdo Dry Valleys. Geological Society of America Bulletin, 125, 14841502.
Levy, J.S., Fountain, A.G., Dickson, J.L., Head, J.W., Okal, M., Marchant, D.R. & Watters, J. 2013b. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica. Scientific Reports, 3, 10.1038/srep02269.
Levy, J.S., Fountain, A.G., Gooseff, M.N., Barrett, J.E., Vantreese, R., Welch, K.A., Lyons, W.B., Nielsen, U.N. & Wall, D.H. 2013c. Water track modification of soil ecosystems in the Lake Hoare basin, Taylor Valley, Antarctica. Antarctic Science, 26, 10.1017/S095410201300045X.
Lyons, W.B., Fountain, A., Doran, P., Priscu, J.C., Neumann, K. & Welch, K.A. 2000. Importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. Freshwater Biology, 43, 355367.
Lyons, W.B., Welch, K.A., Carey, A.E., Doran, P.T., Wall, D.H., Virginia, R.A., Fountain, A.G., Csatho, B.M. & Tremper, C.M. 2005. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Annals of Glaciology, 40, 200206.
MacCulloch, R.J.L. 1996. The microclimatology of Antarctic soils. MSc thesis, University of Waikato, 163 pp. [Unpublished].
Marchant, D.R., Lewis, A.R., Phillips, W.M., Moore, E.J., Souchez, R.A., Denton, G.H., Sugden, D.E., Potter, N. & Landis, G.P. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin, 114, 718730.
McKay, C.P. 2009. Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 8994.
McKay, C.P., Mellon, M.T. & Friedmann, E.I. 1998. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 3138.
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. & Tate, C.M. 1999. Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985995.
Mustard, J.F., Cooper, C.D. & Rifkin, M.K. 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 411414.
Oke, T.R. 1987. Boundary layer climates, 2nd ed. Oxford: Routledge, 435 pp.
Pringle, D.J., Dickinson, W.W., Trodahl, H.J. & Pyne, A.R. 2003. Depth and seasonal variations in the thermal properties of Antarctic Dry Valley permafrost from temperature time series analysis. Journal of Geophysical Research - Solid Earth, 108, 10.1029/2002JB002364.
Stuiver, M., Denton, G.H., Hughes, T.J. & Fastook, J.L. 1981. History of the marine ice sheet in West Antarctica during the last glaciation: a working hypothesis. In Denton, G.H. & Hughes, T.J, eds. The last great ice sheets. New York, NY: Wiley-Blackwell, 319362.
Swanger, K.M. & Marchant, D.R. 2007. Sensitivity of ice-cemented Antarctic soils to greenhouse-induced thawing: are terrestrial archives at risk? Earth and Planetary Science Letters, 259, 10.1016/j.epsl.2007.04.046.
Swanger, K.M., Marchant, D.R., Kowalewski, D.E. & Head, J.W. 2010. Viscous flow lobes in central Taylor Valley, Antarctica: origin as remnant buried glacial ice. Geomorphology, 120, 10.1016/j.geomorph.2010.03.024.
Šabacká, M., Priscu, J.C., Basagic, H.J., Fountain, A.G., Wall, D.H., Virginia, R.A. & Greenwood, M.C. 2012. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology, 155, 10.1016/j.geomorph.2011.12.009.
Thompson, L.G., Brecher, H.H., Mosley-Thompson, E., Hardy, D.R. & Mark, B.G. 2009. Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences of the United States of America, 106, 19 77019 775.
Ugolini, F.C. & Bockheim, J.G. 2008. Antarctic soils and soil formation in a changing environment: a review. Geoderma, 144, 10.1016/j.geoderma.2007.10.005.

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Levy and Schmidt supplementary material
Levy and Schmidt supplementary material 1

 Unknown (47 KB)
47 KB
UNKNOWN
Supplementary materials

Levy and Schmidt supplementary material
Levy and Schmidt supplementary material 2

 Unknown (44 KB)
44 KB
PDF
Supplementary materials

Levy and Schmidt supplementary material
Levy and Schmidt supplementary material 3

 PDF (7.2 MB)
7.2 MB

Thermal properties of Antarctic soils: wetting controls subsurface thermal state

  • Joseph S. Levy (a1) and Logan M. Schmidt (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.