Skip to main content Accessibility help

Subglacial topography and thickness of ice caps on the Argentine Islands

  • Jānis Karušs (a1), Kristaps Lamsters (a1), Anatolii Chernov (a2) (a3), Māris Krievāns (a1) and Jurijs Ješkins (a1)...


This study presents the first subglacial topography and ice thickness models of the largest ice caps of the Argentine Islands, Wilhelm Archipelago, West Antarctica. During this study, ground-penetrating radar was used to map the thickness and inner structure of the ice caps. Digital surface models of all studied islands were created from aerial images obtained with a small-sized unmanned aerial vehicle and used for the construction of subglacial topography models. Ice caps of the Argentine Islands cover ~50% of the land surface of the islands on average. The maximum thickness of only two islands (Galindez and Skua) exceeds 30 m, while the average thickness of all islands is only ~5 m. The maximum ice thickness reaches 35.3 m on Galindez Island. The ice thickness and glacier distribution are mainly governed by prevailing wind direction from the north. This has created the prominent narrow ice ridges on Uruguay and Irizar islands, which are not supported by topographic obstacles, as well as the elongated shape of other ice caps. The subglacial topography of the ice caps is undulated and mainly dependent on the geological structure and composition of magmatic rocks.


Corresponding author


Hide All
Arigony-Neto, J., Skvarca, P., Marinsek, S., Braun, M., Humbert, A., Júnior, C.W.M. & Jaña, R. 2014. Monitoring glacier changes on the Antarctic Peninsula. In Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A. & Raup, B.H., eds. Global land ice measurements from space. Berlin: Springer, 717741.
Bakhmutov, V.G. & Shpyra, V. 2011. Paleomagnetism of Late Cretaceous–Paleocene igneous rocks from western part of Antarctic Peninsula (Argentine Islands archipelago). Geological Quarterly, 55, 285300.
Bakhmutov, V.G., Vaschenko, V.N., Grischenko, V.F., Korchagin, I.N., Levashov, S.P. & Pishchany, Y.M. 2006. Methods and results of glaciers strength of small Wiggins (Antarctic Peninsula) and ‘Domashnij’ (Galindez Island). Ukrainian Antarctic Journal, 4–5, 4751.
Benjumae, B., Macharet, Y.Y., Navarro, F.J. & Teixidó, T. 2003. Estimation of water content in a temperate glacier from radar and seismic sounding data. Annals of Glaciology, 37, 317324.
Blindow, N., Suckro, S.K., Rückamp, M., Braun, M., Schindler, M., Breuer, B., et al. 2010. Geometry and thermal regime of the King George Island ice cap, Antarctica, from GPR and GPS. Annals of Glaciology, 51, 103109.
Bradford, J.H. & Harper, J.T. 2005. Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers. Geophysical Research Letters, 32, L08502.
Chernov, A.P. 2017. Informativeness of ground penetrating radar method for investigations of the glaciers on Galindez, Winter and Skua islands (the Argentine Islands, results for the period April to November 2017). Ukrainian Antarctic Journal, 16, 2936.
Chernov, A.P., Karušs, J., Lamsters, K., Krievāns, M. & Otruba, Y. 2018. First results of glacier monitoring on Woozle Hill (Galindez Island, the Argentine Islands, Antarctica) for the period April 2017–August 2018. In 12th International Conference on Monitoring of Geological Processes and Ecological Condition of the Environment. Houten: European Association of Geoscientists and Engineers, 10.3997/2214-4609.201803152.
Cisak, J., Milinevsky, G., Danylevsky, V., Glotov, V., Chizhevsky, V., Kovalenok, S., et al. 2008. Atmospheric impact on GNSS observations, sea level change investigations and GPS-photogrammetry ice cap survey at Vernadsky Station in Antarctic Peninsula. In Capra, A. and Dietrich, R., eds. Geodetic and geophysical observations in Antarctica. Berlin: Springer, 191209.
Cook, A.J., Holland, P.R., Meredith, M.P., Murray, T., Luckman, A. & Vaughan, D.G. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283286.
Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L. & Glasser, N.F. 2012. Antarctic Peninsula ice sheet evolution during the Cenozoic Era. Quaternary Science Reviews, 31, 3066.
Elliot, D.H. 1964. The petrology of the Argentine Islands. BAS Scientific Reports, 41, 131.
Engel, Z., Nývlt, D. & Láska, K. 2012. Ice thickness, areal and volumetric changes of Davies Dome and Whisky Glacier (James Ross Island, Antarctic Peninsula) in 1979–2006. Journal of Glaciology, 58, 904914.
Fleming, W.L.S. 1940. Relic glacial forms on the western seaboard of Graham Land. The Geographical Journal, 96, 93100.
Fleming, W.L.S., Stephenson, A., Roberts, B.B. & Bertram, G.C.L. 1938. Notes on the scientific work of the British Graham Land Expedition, 1934–37. The Geographical Journal, 91, 508532.
Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393.
Hlotov, V., Kovalenok, S., Milinevskyy, G., Nakalov, E. & Fulitka, J. 2003. Monitoring of small glaciers as indicators of changes of climate in region of the Antarctic Peninsula. Ukrainian Antarctic Journal, 1, 9399.
Ingólfsson, Ó., Hjort, C., Berkman, P.A., Björck, S., Colhoun, E., Goodwin, I.D., et al. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.
Lamsters, K., Karušs, J., Rečs, A. & Bērziņš, D. 2016. Detailed subglacial topography and drumlins at the marginal zone of Múlajökull outlet glacier, central Iceland: evidence from low frequency GPR data, Polar Science, 10, 470475.
Leat, P.T., Scarrow, J.H. & Millar, I.L. 1995. On the Antarctic Peninsula batholith. Geological Magazine, 132–134, 399412.
Levashov, S.P., Yakymchuk, N.A., Usenko, V.P., Korchagin, I.N., Solovyov, V.D. & Pishchany, Y.M. 2004. Determination of the Galindez Island ice cap thickness by the vertical electrical resonance sounding method. Ukrainian Antarctic Journal, 2, 3843.
Ó Cofaigh, C., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., et al. 2014. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews, 100, 87110.
Pellikka, P. & Rees, W.G. 2010. Remote sensing of glaciers: techniques for topographic, spatial and thematic mapping of glaciers. Boca Raton, FL: CRC Press, 340 pp.
Rau, F., Mauz, F., De Angelis, H., Jaňa., R., Neto, J.A., Skvarca, P., et al. 2004. Variations of glacier frontal positions on the northern Antarctic Peninsula. Annals of Glaciology, 39, 525530.
Rundle, A.S. 1973. Glaciology of the Marr Ice Piedmont, Anvers Island, Antarctica. Institute of Polar Studies Report No. 47. Columbus, OH: Research Foundation and the Institute of Polar Studies, The Ohio State University, 237 pp.
Rymill, J.R. 1938. British Graham Land expedition, 1934–37. The Geographical Journal, 91, 297312.
Sadler, I. 1968. Observations on the ice caps of Galindez and Skua islands, Argentina Islands, 1960–66. BAS Bulletin, No. 17, 2149.
Smith, A.M., Vaughan, D.G., Doake, C.S.M. & Johnson, A.C. 1998. Surface lowering of the ice ramp at Rother a Point, Antarctic Peninsula, in response to regional climate change. Annals of Glaciology, 27, 113118.
Smith, B.M.E. 1972. Airborne radio echo sounding of glaciers in the Antarctic Peninsula. BAS Scientific Reports, 72, 111.
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. & Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462.
Thomas, R.H. 1963. Studies on the ice cap of Galindez Island, Argentina Islands. BAS Bulletin, No. 2, 2743.
Tretyak, K., Hlotov, V., Holubinka, Y. & Marusazh, K. 2016. Complex geodetic research in Ukrainian Antarctic station ‘Academician Vernadsky’ (years 2002–2005, 2013–2014). Reports on Geodesy and Geoinformatics, 100, 149163.
Turner, J., Chenoli, S.N., Marshall, G., Phillips, T. & Orr, A. 2009. Strong wind events in the Antarctic. Journal of Geophysical Research: Atmospheres, 114(D18), 10.1029/2008JD011642.
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carelton, A.M., Jones, P.D., et al. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.
Turner, J., Lu, H., White, L., King, J.C., Phillips, T., Hosking, J.S., et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415.
Tymofeyev, V.E. 2014. Some peculiarities of the near-surface air temperature change in the Antarctic Peninsula region. Ukrainian Antarctic Journal, 13, 110123.
Tymofeyev, V.E., Beznoshchehenko, B.O. & Shcheglov, O.A. 2017. On the near-surface atmospheric circulation in the region of the Antarctic Peninsula. Ukrainian Antarctic Journal, 15, 6680.
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., et al. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274.


Subglacial topography and thickness of ice caps on the Argentine Islands

  • Jānis Karušs (a1), Kristaps Lamsters (a1), Anatolii Chernov (a2) (a3), Māris Krievāns (a1) and Jurijs Ješkins (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed