Skip to main content Accessibility help

Sedimentary breccia and diamictite of the Cambrian Spurs Formation in northern Victoria Land, Antarctica: two kinds of debris flows in a submarine channel system

  • Young-Hwan G. Kim (a1) (a2), Jusun Woo (a1) (a2), Tae-Yoon S. Park (a1) (a2), Ji-Hoon Kihm (a1) (a2), Jong Ik Lee (a1) (a2) and Moon Young Choe (a2)...


The submarine channel-fill system of the Cambrian Spurs Formation exhibits unique metre-scale cycles of breccia and diamictite. The studied sections, Eureka Spurs, are located at the Mariner Glacier in the central-eastern part of northern Victoria Land, Antarctica. A facies analysis of the channel-fill deposit has led to the recognition of four main lithofacies: breccia, diamictite, thin-bedded sandstone and mudstone. The channel-fill deposit consists of two architectural elements: hollow-fill (HF) and sheet-like (SL) elements. The SL has wide convex-up geometry and consists solely of a very thick bed of diamictite, and is interpreted as a submarine channel lobe. The HF has a concave-up erosional base and flat upper surface. The HF consists of nine cyclic alternations of underlying breccia (cohesionless debris flow) and overlying diamictite (cohesive debris flow). The deposition of breccia is interpreted to have been controlled by repeated allogenic processes such as earthquakes. In contrast, the abrupt vertical transition from breccia to diamictite in each cycle is interpreted to have resulted from an autogenic, slope instability-related process. The interaction of the allogenic and autogenic factors recorded in the metre-scale unique cyclic deposits provides new criteria to interpret cycles of submarine debris flow.


Corresponding author

*Corresponding author:


Hide All
Andrews, P.B. & Laird, M.G. 1976. Sedimentology of a late Cambrian regressive sequence (Bowers Group), Northern Victoria Land, Antarctica. Sedimentary Geology, 16, 10.1016/0037-0738(76)90011-7.
Bernhardt, A., Jobe, Z.R. & Lowe, D.R. 2011. Stratigraphic evolution of a submarine channel–lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28, 10.1016/j.marpetgeo.2010.05.013.
Bradshaw, J., Weaver, S. & Laird, M. 1985. Suspect terranes in north Victoria Land, Antarctica. In Howell, D.G., ed. Tectonostratigraphic terranes of the Circum-Pacific region . Circum-Pacific Council for Energy and Mineral Resources, Earth Sciences Series 1, 467479.
Bradshaw, J.D., Gutjahr, M., Weaver, S.D., & Bassett, K.N. 2009. Cambrian intra-oceanic arc accretion to the austral Gondwana margin: constraints on the location of proto-New Zealand. Australian Journal of Earth Sciences, 56, 10.1080/08120090902806339.
Capponi, G., Crispini, L. & Meccheri, M. 1999. Structural history and tectonic evolution of the boundary between the Wilson and Bowers terranes, Lanterman Range, northern Victoria Land, Antarctica. Tectonophysics, 312, 10.1016/S0040-1951(99)00174-2.
Capponi, G., Meccheri, M., Pertusati, P.C., Carosi, R., Crispini, L., Musumeci, G., Oggiano, G., Roland, N.W. & Tessensohn, F. 2012. Antarctic Geological 1: 250,000 Map Series. Freyberg Mountains Quadrangle (Victoria Land). Rome: Ministero dell’Istruzione, dell’Università e della Ricerca, Programma Nazionale di Ricerche in Antartide.
Cooper, R.A., Jago, J.B. & Begg, J.G. 1996. Cambrian trilobites from Northern Victoria Land, Antarctica, and their stratigraphic implications. New Zealand Journal of Geology and Geophysics, 39, 10.1080/00288306.1996.9514720.
Cooper, R.A., Jago, J.B., Rowell, A.J. & Braddock, P. 1983. Age and correlation of the Cambrian–Ordovician Bowers Supergroup, northern Victoria Land. In Jago, J.B., Oliver, R.L. & James, P.R., eds. Antarctic earth science. Cambridge: Cambridge University Press, 128131.
Cooper, R.A., Jago, J.B., MacKinnon, D.I., Simes, J.E., & Braddock, P.E. 1976. Cambrian fossils from the Bowers Group, northern Victoria Land, Antarctica (preliminary note). New Zealand Journal of Geology and Geophysics, 19, 10.1080/00288306.1976.10423523.
Cornamusini, G., & Costantini, A. 1997. Sedimentology of a Macigno turbidite section in the Piombino-Baratti area (northern Apennines, Italy). Giornale di Geologia, 59, 129–141.
Cornamusini, G. 2012. Characters and significance of the coarse-chaotic deposits within the deep-sea turbidite systems of the Northern Apennines (Oligocene-Miocene, Macigno Fm.). Rendiconti Online Societa Geologica Italiana, 21, 893895.
Cornamusini, G., Elter, F. & Sandrelli, F. 2002. The Corsica–Sardinia Massif as source area for the early northern Apennines foredeep system: evidence from debris flows in the “Macigno costiero” (Late Oligocene, Italy). International Journal of Earth Sciences, 91, 10.1007/s005310100212.
Di Celma, C., Cantalamessa, G., Didaskalou, P. & Lori, P. 2010. Sedimentology, architecture, and sequence stratigraphy of coarse-grained, submarine canyon fills from the Pleistocene (Gelasian-Calabrian) of the Peri-Adriatic basin, central Italy. Marine and Petroleum Geology, 27, 10.1016/j.marpetgeo.2010.05.011.
Elliott, T. 2000. Depositional architecture of a sand-rich, channelized turbidite system: the Upper Carboniferous Ross Sandstone Formation, western Ireland. In Weimar, P., Slatt, R.M., Bouma, A.H. & Lawrence, D.T., eds. Deep-water reservoirs of the world, Proceedings of the 20th Annual Research Conference. Austin: SEPM, 342–373.
Federico, L., Capponi, G., & Crispini, L. 2006. The Ross orogeny of the transantarctic mountains: a northern Victoria Land perspective. International Journal of Earth Sciences, 95, 759770.
Federico, L., Crispini, L., Capponi, G. & Bradshaw, J.D. 2009. The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: a synthesis. Gondwana Research, 15, 10.1016/
Haughton, P., Davis, C., McCaffrey, W. & Barker, S. 2009. Hybrid sediment gravity flow deposits – classification, origin and significance. Marine and Petroleum Geology, 26, 10.1016/j.marpetgeo.2009.02.012.
Hubbard, S.M., Fildani, A., Romans, B.W., Covault, J.A. & McHargue, T.R. 2010. High-relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. Journal of Sedimentary Research, 80, 10.2110/jsr.2010.042.
Ilstad, T., Elverhøi, A., Issler, D. & Marr, J.G. 2004. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Marine Geology, 213, 10.1016/j.margeo.2004.10.017.
Jago, J.B. & Cooper, R.A. 2005. A Glyptagnostus stolidotus trilobite fauna from the Cambrian of northern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 48, 10.1080/00288306.2005.9515140.
Jago, J.B. & Cooper, R.A. 2007. Middle Cambrian trilobites from Reilly Ridge, northern Victoria Land, Antarctica. Memoirs of the Association of Australasian Palaeontologists, 34, 473487.
Jullien, R., Meakin, P. & Pavlovitch, A. 1992. Three-dimensional model for particle-size segregation by shaking. Physical Review Letters, 69, 10.1103/PhysRevLett.69.640.
Kleinschmidt, G. & Tessensohn, F. 1987. Early Paleozoic westward directed subduction at the Pacific margin of Antartica. In Mckenzie, G.D., ed. Gondwana six: structure, tectonics, and geophysics. Washington, DC: American Geophysical Union Geophysical Monograph, 40, 89105.
Kneller, B.C. & McCaffrey, W.D. 2003. The interpretation of vertical sequences in turbidite beds: the influence of longitudinal flow structure. Journal of Sedimentary Research, 73, 10.1306/031103730706.
Läufer, A.L., Lisker, F. & Phillips, G. 2011. Late Ross-orogenic deformation of basement rocks in the northern Deep Freeze Range, Victoria Land, Antarctica: the Lichen Hills Shear Zone. Polarforschung, 80, 6070.
Laird, M. & Bradshaw, J. 1983. New data on the lower Paleozoic Bowers supergroup, northern Victoria Land. In Jago, J.B., Oliver, R.L. & James, P.R., eds. Antarctic earth science. Cambridge: Cambridge University Press, 123126.
Laird, M., Bradshaw, J. & Wodzicky, A. 1982. Stratigraphy of the Late Cambrian and Early Paleozoic Bowers Supergroup, northern Victoria Land, Antarctica. In Craddock, C., ed. Antarctic geoscience. Madison: University of Wisconsin Press, 535542.
Leach, H.M., Herbert, N., Los, A. & Smith, R.L. 1999. The Schiehallion development. In Fleet, A.J. & Boldy, S.A.R., eds. Petroleum geoology of northwest Europe, Proceedings of the 5th Conference. London: Geological Society (London), 683–692.
Martinsen, O.J., Lien, T. & Walker, R.G. 2000. Upper Carboniferous deep water sediments, western Ireland: analogues for passive margin turbidite plays. In Weimar, P., Slatt, R.M., Bouma, A.H. & Lawrence, D.T., eds. Deep-water reservoirs of the world, Proceedings of the 20th Annual Research Conference. Austin: SEPM, 533–555.
McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy, M., Posamentier, H.W. & Drinkwater, N.J. 2011. Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 28, 10.1016/j.marpetgeo.2010.07.008.
Mulder, T. & Alexander, J. 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 10.1046/j.1365-3091.2001.00360.x.
Park, T.-Y.S., Kihm, J.-H., Woo, J., Kim, Y.-H.G. & Lee, J.I. 2016. Ontogeny of the Furongian (late Cambrian) trilobite Proceratopyge cf. P. Lata Whitehouse from northern Victoria Land, Antarctica, and the evolution of metamorphosis in trilobites. Palaeontology, 59, 10.1111/pala.12251.
Payros, A., Pujalte, V. & Orue-Etxebarria, X. 2007. A point‐sourced calciclastic submarine fan complex (Eocene Anotz Formation, western Pyrenees): facies architecture, evolution and controlling factors. Sedimentology, 54, 10.1111/j.1365-3091.2006.00823.x.
Pickering, K.T., Hodgson, D.M., Platzman, E., Clark, J.D. & Stephens, C. 2001. A new type of bedform produced by backfilling processes in a submarine channel, late Miocene, Tabernas-Sorbas Basin, SE Spain. Journal of Sedimentary Research, 71, 692704.
Posamentier, H.W. & Allen, G.P. 1993. Variability of the sequence stratigraphic model: effects of local basin factors. Sedimentary Geology, 86, 10.1016/0037-0738(93)90135-R.
Riddolls, B.W. & Hancox, G.T. 1968. The geology of the upper Mariner Glacier region, North Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 11, 10.1080/00288306.1968.10420758.
Rocchi, S., Bracciali, L., Di Vincenzo, G., Gemelli, M., Ghezzo, C. 2011. Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land. Gondwana Research, 19, 10.1016/
Sohn, Y.K. 2000. Depositional processes of submarine debris flows in the Miocene fan deltas, Pohang Basin, SE Korea with special reference to flow transformation. Journal of Sedimentary Research, 70, 10.1306/2DC40922-0E47-11D7-8643000102C1865D.
Sohn, Y.K., Choe, M.Y. & Jo, H.R. 2002. Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous Cerro Toro Formation, southern Chile). Terra Nova, 14, 10.1046/j.1365-3121.2002.00440.x.
Stevenson, C.J., Talling, P.J., Masson, D.G., Sumner, E.J., Frenz, M., Wynn, R.B. 2014. The spatial and temporal distribution of grain‐size breaks in turbidites. Sedimentology, 61, 10.1111/sed.12091.
Talling, P.J., Malgesini, G. & Felletti, F. 2013. Can liquefied debris flows deposit clean sand over large areas of sea floor? Field evidence from the Marnoso‐arenacea Formation, Italian Apennines. Sedimentology, 60, 10.1111/j.1365-3091.2012.01358.x.
Talling, P.J., Masson, D.G., Sumner, E.J. & Malgesini, G. 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59, 10.1111/j.1365-3091.2012.01353.x.
Tripsanas, E.K., Piper, D.J.W., Jenner, K.A. & Bryant, W.R. 2008. Submarine mass‐transport facies: new perspectives on flow processes from cores on the eastern North American margin. Sedimentology, 55, 10.1111/j.1365-3091.2007.00894.x.
Weaver, S.D., Bradshaw, J.D. & Laird, M.G. 1984. Geochemistry of Cambrian volcanics of the Bowers Supergroup and implications for the Early Palaeozoic tectonic evolution of northern Victoria Land, Antarctica. Earth and Planetary Science Letters, 68, 10.1016/0012-821X(84)90145-6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed