Skip to main content Accessibility help
×
Home

A comparison of annual layer thickness model estimates with observational measurements using the Berkner Island ice core, Antarctica

  • A. Massam (a1) (a2), S.B. Sneed (a3), G.P. Lee (a1) (a4), R.R. Tuckwell (a1), R. Mulvaney (a1), P.A. Mayewski (a3) and P.L. Whitehouse (a2)...

Abstract

A model to estimate the annual layer thickness of deposited snowfall at a deep ice core site, compacted by vertical strain with respect to depth, is assessed using ultra-high-resolution laboratory analytical techniques. A recently established technique of high-resolution direct chemical analysis of ice using ultra-violet laser ablation inductively-coupled plasma mass spectrometry (LA ICP-MS) has been applied to ice from the Berkner Island ice core, and compared with results from lower resolution techniques conducted on parallel sections of ice. The results from both techniques have been analysed in order to assess the capability of each technique to recover seasonal cycles from deep Antarctic ice. Results do not agree with the annual layer thickness estimates from the age–depth model for individual samples <1 m long as the model cannot reconstruct the natural variability present in annual accumulation. However, when compared with sections >4 m long, the deviation between the modelled and observational layer thicknesses is minimized to within two standard deviations. This confirms that the model is capable of successfully estimating mean annual layer thicknesses around analysed sections. Furthermore, our results confirm that the LA ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical resolution.

Copyright

Corresponding author

References

Hide All
Arrowsmith, P. 1987. Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry. Analytical Chemistry, 59, 14371444.
Bea, F., Montero, P., Stroh, A. & Baasner, J. 1996. Microanalysis of minerals by an Excimer UV-LA-ICP-MS system. Chemical Geology, 133, 145156.
Dansgaard, W. 1953. The abundance of 18O in atmospheric water and water vapour. Tellus, 5, 461469.
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16, 436468.
Haines, S.A., Mayewski, P.A., Kurbatov, A.V., Maasch, K.A., Sneed, S.B., Spaulding, N.E., Dixon, D.A. & Bohleber, P.D. 2016. Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic ice core. Journal of Glaciology, 62, 10.1017/jog.2016.5.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T.F. & Chappellaz, J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383386.
Mani, F.S. 2010. Measurements of δ15N of nitrogen gas and composition of trace gases in air from firn and ice cores. PhD thesis, University of East Anglia, 273 pp. [Unpublished].
Mayewski, P.A., Sneed, S.B., Birkel, S.D., Kurbatov, A.V. & Maasch, K.A. 2014. Holocene warming marked by abrupt onset of longer summers and reduced storm frequency around Greenland. Journal of Quaternary Science, 29, 99104.
Müller, W., Shelley, J.M.G. & Rasmussen, S.O. 2011. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS. Journal of Analytical Atomic Spectrometry, 26, 23912395.
Mulvaney, R., Alemany, O. & Possenti, P. 2007. The Berkner Island (Antarctica) ice-core drilling project. Annals of Glaciology, 47, 115124.
Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffman, E. & Skole, J. 2001. Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores. Fresenius Journal of Analytical Chemistry, 370, 629636.
Rothlisberger, R., Bigler, M., Hutterli, M., Sommer, S., Stauffer, B., Junghans, H.G. & Wagenbach, D. 2000. Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environmental Science & Technology, 34, 338342.
Sigg, A., Fuhrer, K., Anklin, M., Staffelbach, T. & Zurmuhle, D. 1994. A continuous analysis technique for trace species in ice cores. Environmental Science & Technology, 28, 204209.
Sneed, S.B., Mayewski, P.A., Sayre, W.G., Handley, M.J., Kurbatov, A.V., Taylor, K.C., Bohleber, P., Wagenback, D., Erhardt, T. & Spaulding, N.E. 2015. New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores. Journal of Glaciology, 61, 233242.
Sommer, S., Appenzeller, C., Röthlisberger, R., Hutterli, M.A., Stauffer, B., Wagenbach, D., Oerter, H., Wilhelms, F., Miller, H. & Mulvaney, R. 2000. Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica. Journal of Geophysical Research - Atmospheres, 105, 29 41129 421.
Thomas, E.R., Wolff, E.W., Mulvaney, R., Johnsen, S.J., Steffensen, J.P. & Arrowsmith, C. 2009. Anatomy of a Dansgaard-Oeschger warming transition: high resolution analysis of the North Greenland Ice Core Project ice core. Journal of Geophysical Research - Atmospheres, 114, 10.1029/2008JD011215.
Wagenbach, D., Graf, W., Minikin, A., Trefzer, U., Kippstuhl, J., Oerter, H. & Blindow, N. 1994. Reconnaissance of chemical and isotopic firn properties on top of Berkner Island, Antarctica. Annals of Glaciology, 20, 307312.

Keywords

Type Description Title
PDF
Supplementary materials

Massam supplementary material
Massam supplementary material 1

 PDF (473 KB)
473 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed