Skip to main content Accessibility help

Review: Use of human-edible animal feeds by ruminant livestock

  • J. M. Wilkinson (a1) and M. R. F. Lee (a2) (a3)


The drive to increase the output of animal product in some sectors of ruminant livestock production has led to greater use of feeds such as cereal grains and soyabean meal that are potentially human-edible. This trend has caused concern since, by so doing, ruminants compete not only with monogastric livestock but also with the human population for a limited global area of cultivatable land on which to produce grain crops. Reasons for using potentially human-edible feeds in ruminant diets include increased total daily energy intake, greater supply of essential amino acids and improved ruminal balance between fermentable energy and degradable protein. Soyabean meal, produced on land that has been in arable cultivation for many years can fulfil a useful role as a supplier of undegraded dietary protein in diets for high-yielding dairy cows. However, in the context of sustaining the production of high-quality foods from livestock to meet the demands of a growing human population, the use of potentially human-edible feed resources by livestock should be restricted to livestock with the highest daily nutrient requirements; that is, potentially human-edible feed inputs should be constrained to meeting requirements for energy and protein and to rectifying imbalances in nutrient supply from pastures and forage crops such as high concentrations of nitrogen (N). There is therefore a role for human-edible feeds in milk production because forage-only systems are associated with relatively low output per head and also low N use efficiency compared with systems with greater reliance on human-edible feeds. Profitability on farm is driven by control of input costs as well as product value and examples are given of low-cost bovine milk and meat production with little or no reliance on potentially human-edible feeds. In beef production, the forage-only systems currently under detailed real-time life-cycle analysis at the North Wyke Farm Platform, can sustain high levels of animal growth at low feed cost. The potential of all-forage diets should be demonstrated for a wide range of ruminant milk and meat production systems. The challenge for the future development of ruminant systems is to ensure that potentially human-edible feeds, or preferably human-inedible by-products if available locally, are used to complement pastures and forage crops strategically rather than replace them.


Corresponding author


Hide All
Agriculture and Horticulture Development Board (AHDB) 2012a. Profiting from efficient milk production. Dairy Co Milkbench Report, Stoneleigh Park, Warwickshire, UK.
Agriculture and Horticulture Development Board (AHDB) 2012b. Benefits of early turn out soon add up. Retrieved on 9 December 2016 from
Agricultural and Food Research Council (AFRC) 1995. Energy and Protein Requirements of Ruminants. An advisory manual prepared by the AFRC Technical Committee on Responses to Nutrients. Compiled by G. Alderman and B. Cottrill. CAB International, Wallingford, UK.
Alexandratos, N and Bruinsma, J 2012. World agriculture towards 2030/2050: the 2012 revisions. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Audsley, E and Wilkinson, JM 2014. What is the potential for reducing national greenhouse gas emissions from crop and livestock production systems? Journal of Cleaner Production 73, 263268.
Bailey, R, Froggatt, A and Wellesley, L 2014. Livestock – climate change’s forgotten sector. Global public opinion on meat and dairy consumption. Royal Institute of International Affairs, Chatham House, London, UK.
Bava, L, Rapetti, L, Crovetto, GM, Tamburini, A, Sandrucci, A, Galassi, G and Succi, G 2001. Effect of a non-forage diet on milk production, energy, and nitrogen metabolism in dairy goats throughout lactation. Journal of Dairy Science 84, 24502459.
Beever, DE, Offer, N and Gill, M 2000. The feeding value of grass and grass products. In Grass. Its production and utilisation (ed. A Hopkins), pp. 140195. Blackwell Science, Oxford, UK.
Broderick, GA 2003. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. Journal of Dairy Science 86, 13701381.
Bryngelsson, D, Wirsenius, S, Hedenus, F and Sonesson, U 2016. How can EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 59, 152164.
Castillo, AR, Kebreab, E, Beever, DE, Barbi, JH, Sutton, JD, Kirby, HC and France, J 2001. The effect of protein supplementation on nitrogen utilization in dairy cows fed grass silage diets. Journal of Animal Science 79, 247253.
Chaves, AV, Woodward, S, Waghorn, GC, Brookes, IM, Holmes, CW and Laboyrie, PG 2002. Post-peak supplementation of pasture fed dairy cows with sulla and maize silages. Proceedings of the New Zealand Grassland Association 64, 125128.
Clement, AR, Dalley, DE, Chapman, DF, Edwards, GR and Bryant, RH 2016. Effect of grazing system on nitrogen partitioning in lactating dairy cows grazing irrigated pastures in Canterbury, New Zealand. Proceedings of the New Zealand Society of Animal Production 76, 9499.
Conrad, H, Pratt, AD and Hibbs, JW 1966. Regulation of feed intake in dairy cows. I. Change in importance of physical and physiological factors with increasing digestibility. Journal of Dairy Science 47, 5462.
Corona, L, Rodriguez, S, Ware, RA and Zinn, RA 2005. Comparative effects of whole, ground, dry rolled and steam-flaked corn on digestion and growth performance in feedlot cattle. The Professional Animal Scientist 21, 200206.
Council for Agricultural Science and Technology (CAST) 1999. Animal Agriculture and Global Food Supply. Task Force Report No. 135, July, CAST, Ames, IA, USA.
Daley, CA, Abbott, A, Doyle, PS, Nader, GA and Larson, S 2010. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal 9, 10.
Dobson, H, Smith, RF, Royal, MD, Knight, CH and Sheldon, IM 2007. The high producing dairy cow and its reproductive performance. Reproduction of Domestic Animals 42, 1723.
Dijkstra, J, France, J, Ellis, JL, Strathe, AB, Kebreab, E and Bannink, A 2013. Production efficiency of ruminants: feed nitrogen, and methane. In Sustainable animal agriculture (ed. E Kebreab), pp. 1025. CAB International, Croydon, UK.
Eisler, MC, Lee, MRF, Tarlton, JF, Martin, GB, Beddington, J, Dungait, JAJ, Greathead, H, Liu, J, Mathew, S, Miller, H, Misselbrook, T, Murray, P, Vinod, VK, Van Saun, R and Winter, M 2014. Steps to sustainable livestock. Nature 507, 3234.
Ertl, P, Knaus, W and Steinwidder, A 2014. Comparison of zero concentrate supplementation with different quantities of concentrates in terms of production, animal health and profitability of organic dairy farms in Austria. Organic Agriculture 4, 233242.
Eshel, G, Shepon, A, Mokov, T and Milo, R 2014. Partitioning United States’ feed consumption among livestock categories for improved environmental cost assessments. Journal of Agricultural Science 153, 432445.
Food and Agriculture Organization of the United Nations (FAO) 2010. The state of food and agriculture 2009, livestock in the balance. FAO, Rome, Italy.
Fulkerson, WJ and Trevaskis, L 1997. Limitations to milk production from pasture. Recent advances in animal nutrition in Australia. University of New England, Armidale. NSW, Australia, pp. 159–165.
Giger-Reverdin, S, Rigalma, K, Desnoyers, M, Sauvant, D and Duvaux-Ponter, C 2014. Effect of concentrate level on feeding behaviour and rumen and blood parameters in dairy goats: relationship between behavioural and physiological parameters and effect of between-animal variability. Journal of Dairy Science 97, 43674378.
Groenevelt, M, Anzuino, K, Smith, S, Phythian, C, Lee, MRF and Grogono-Thomas, R 2015. Lameness in two dairy goat (Capra hircus) herds; a suspected combination of nutritional factors and treponemes. BMC Veterinary Record 8, 791.
Harper, LA, Denmead, OT, Freney, JR and Byers, FM 1999. Direct measurements of methane emissions from grazing and feedlot cattle. Journal of Animal Science 77, 13921401.
Hegarty, M, Yadav, R, Lee, MRF, Armstead, I, Scollan, ND, Powell, W and Skot, L 2013. Genotyping by sequencing enables mapping of fatty acid composition traits of Lolium perenne. Plant Biotechnology Journal 11, 572581.
Hendy, CRC, Kleih, U, Grashaw, R and Phillips, M 1995. Interaction between livestock production systems and the environment: concentrate feed demand. FAO Consultancy report for Livestock and the Environment Study, FAO, Rome, Italy.
Holmes, CW, Brookes, IM, Garrick, DJ, Mackenzie, DDS, Parkinson, TJ and Wilson, GF 2002. Milk production from pasture: principles and practices. Massey University, Palmerston North, New Zealand.
Huhtanen, P., Hetta, M. and Swensson, C 2011. Evaluation of canola meal as a protein supplement for dairy cows: a review and a meta-analysis. Canadian Journal of Animal Science 91, 529543.
Jacobs, JL, McKenzie, FR and Ward, GN 1999. Changes in the botanical composition and nutritive characteristics of pasture, and nutrient selection by dairy cows grazing rainfed pastures in western Victoria. Australian Journal of Experimental Agriculture 39, 419428.
Ledgard, S, Schils, R, Eriksen, J and Luo, J 2009. Environmental impacts of grazed clover/grass pastures. Irish Journal of Agricultural and Food Research 48, 209226.
Lee, MRF 2014. Forage polyphenol oxidase and ruminant livestock nutrition. Frontiers in Plant Science 5, 694.
Lee, MRF, Jones, EL, Humphreys, MO, Moorby, JM, Theodorou, MK, Macrae, JC and Scollan, ND 2001. Production responses from lambs grazed on Lolium perenne selected for an elevated water soluble carbohydrate concentration. Animal Research 50, 441449.
Lee, MRF, Merry, RJ, Moorby, JM, Humphreys, MO, Theodorou, MK, Macrae, JC and Scollan, ND 2003. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Animal Feed Science and Technology 104, 5970.
Lee, MRF, Parkinson, S, Fleming, HR, Theobald, VJ, Leemans, DK and Burgess, A 2016. The potential of blue lupins (Lupinus angustifolius), as a protein source, in the diets of laying hens. Veterinary and Animal Science 1, 2935.
Lee, MRF, Theobald, VJ, Gordon, N, Leyland, M, Tweed, JKS, Fychan, R and Scollan, ND 2014. The effect of high polyphenol oxidase grass silage on metabolism of polyunsaturated fatty acids and nitrogen across the rumen of beef steers. Journal of Animal Science 92, 50765087.
Lee, MRF, Theobald, VT, Tweed, JKS, Winters, AL and Scollan, ND 2009. Effect of feeding fresh or conditioned red clover on milk fatty acids and N utilisation in lactating dairy cows. Journal of Dairy Science 92, 11361147.
Lehuger, S, Gabrielle, B and Gagnaire, N 2009. Environmental impact of the substitution of soybean meal with locally-produced rapeseed meal in dairy cow feed. Journal of Cleaner Production 17, 616624.
McAuliffe, GA, Takahashi, T, Eisler, M, Harris, P, Orr, RJ and Lee, MRF 2016. Carbon footprint analysis of pasture-based beef production systems based on rich primary data at the North Wyke Farm Platform in Devon, UK. In 10th International Conference on Life Cycle Assessment of Food, 19–21 October, Dublin, pp. 465–470.
McDonald, P, Edwards, RA, Greenhalgh, JFD, Morgan, CA, Sinclair, LA and Wilkinson, RG 2010. Animal Nutrition, 7th edition. Pearson, Harlow, England.
Miller, LA, Moorby, JM, Davies, DR, Humphreys, MO, Scollan, ND, Macrae, JC and Theodorou, MK 2001. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from late-lactation dairy cows. Grass and Forage Science 56, 383394.
Moorby, JM and Theobald, VJ 1999. The effect of duodenal ammonia infusions on milk production and nitrogen balance of the dairy cow. Journal of Dairy Science 82, 24402442.
Nichols, JR, Schingoethe, DJ, Maiga, HA, Briuk, MJ and Piepenbrink, MS 1998. Evaluation of corn distillers grains and ruminally protected lysine and methionine for lactating dairy cows. Journal of Dairy Science 81, 482491.
Opio, C, Gerber, P, Mottet, A, Falcucci, A, Tempio, G, Macleod, M, Vellinga, T, Henderson, B and Steinfeld, H 2013. Greenhouse gas emissions from ruminant supply chains – a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Rae, RC, Thomas, C, Reeve, A, Golightly, AJ, Hodson, RG and Baker, RD 1987. The potential of an all-grass diet for the late winter calving dairy cow. Grass and Forage Science 42, 249257.
Ramin, M and Huhtanen, P 2015. Nordic dairy cow model Karoline in predicting methane emissions: 2. Model evaluation. Livestock Science 178, 8193.
Sinclair, KD, Garnsworthy, PC, Mann, GE and Sinclair, LA 2014. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal 8, 262274.
Stockdale, CR and Dellow, DW 1995. The productivity of lactating dairy cows grazing white clover and supplemented with maize silage. Australian Journal of Agricultural Research 46, 12051217.
Thompson, JB, Orr, RJ, Dungait, J, Murray, P and Lee, MRF 2014. Beef productivity on the North Wyke Farm Platform in two baseline years. Grassland Science in Europe 21, 644646.
Thornton, PK 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society 365, 28532867.
van Zanten, HHE, Mollenhorst, H, Klootwijk, CW, van Middelaar, CE, de Boer, IJM 2016. Global food supply: land use efficiency of livestock systems. The International Journal of Life Cycle Assessment 21, 747758.
Waghorn, GC 2007. What is dietary metabolisable energy? Proceedings of the New Zealand Grassland Association 69, 153159.
Warren, HE, Scollan, ND, Enser, M, Hughes, SI, Richardson, RI and Wood, JD 2008. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: animal performance, carcass quality and muscle fatty acid composition. Meat Science 78, 256269.
White, RR, Capper, JL 2014. Precision diet formulation to improve performance and profitability across various climates: modeling the implications of increasing dairy cattle diet formulation frequency. Journal of Dairy Science 97, 15631577.
Wilkinson, JM 2011. Re-defining efficiency of feed use by livestock. Animal 5, 10141022.
Wilkinson, JM 2013. A review of changes in the use of raw materials in the manufacture of animal feeds in Great Britain from 1976 to 2011. World Agriculture 4, 1017.
Wilkinson, JM and Allen, J 2015. Trends in efficiency of compound feed use by dairy cows in Great Britain. Advances in Animal Biosciences 6, 106.
Wilkinson, JM, Allen, JD, Tunnicliffe, R, Smith, M and Garnsworthy, PC 2014. Variation in composition of pre-grazed pasture herbage in the United Kingdom, 2006–2012. Animal Feed Science and Technology 196, 139144.
Wilkinson, JM and Garnsworthy, PC 2016. Dietary options to reduce the environmental impact of milk production. Journal of Agricultural Science 155, 334347.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed