Skip to main content Accessibility help
×
Home

Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming

  • N. Li (a1), Z. Ren (a1), D. Li (a1) and L. Zeng (a1)

Abstract

There is increasing public concern about poultry welfare; the quality of animal welfare is closely related to the quality of livestock products and the health of consumers. Good animal welfare promotes the healthy growth of poultry, which can reduce the disease rate and improve the production quality and capacity. As behaviour responses are an important expression of welfare, the study of behaviour is a simple and non-invasive method to assess animal welfare. The use of modern technology offers the possibility to monitor the behaviour of broilers and laying hens in a continuous and automated way. This paper reviews the latest technologies used for monitoring the behaviour of broilers and laying hens under both experimental conditions and commercial applications and discusses the potential of developing a precision livestock farming (PLF) system. The techniques that are presented and discussed include sound analysis, which can be an online tool to automatically monitor poultry behaviour non-invasively at the group level; wireless, wearable sensors with radio-frequency identification devices, which can automatically identify individual chickens, track the location and movement of individuals in real time and quantify some behavioural traits accordingly and image processing technology, which can be considered a direct tool for measuring behaviours, especially activity behaviours and disease early warning. All of these technologies can monitor and analyse poultry behaviour, at the group level or individual level, on commercial farms. However, the popularity and adoption of these technologies has been hampered by the logistics of applying them to thousands and tens of thousands of birds on commercial farms. This review discusses the advantages and disadvantages of these techniques in commercial applications and presents evidence that they provide potential tools to automatically monitor the behaviours of broilers and laying hens on commercial farms. However, there still has a long way to go to develop a PLF system to detect and predict abnormal situations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming
      Available formats
      ×

Copyright

Corresponding author

E-mail: renzh68@163.com

Footnotes

Hide All
a

Present address: Hebei Agricultural University No. 289 Lingyusi Street, Baoding 071001, Hebei, P.R. China.

Footnotes

References

Hide All
Amraei, S, Abdanan Mehdizadeh, S and Salari, S 2017. Broiler weight estimation based on machine vision and artificial neural network. British Poultry Science 58, 200205.
Aydin, A 2015. Automatic classification of measures of lying to assess the lameness of broilers. Animal Welfare 24, 335343.
Aydin, A 2017a. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. Computers and Electronics in Agriculture 135, 410.
Aydin, A 2017b. Development of an early detection system for lameness of broilers using computer vision. Computers and Electronics in Agriculture 136, 140146.
Aydin, A, Bahr, C and Berckmans, D 2015. A real-time monitoring tool to automatically measure the feed intakes of multiple broiler chickens by sound analysis. Computers and Electronics in Agriculture 114, 16.
Aydin, A, Bahr, C, Viazzi, S, Exadaktylos, V, Buyse, J and Berckmans, D 2014. A novel method to automatically measure the feed intake of broiler chickens by sound technology. Computers and Electronics in Agriculture 101, 1723.
Aydin, A and Berckmans, D 2016. Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens. Computers and Electronics in Agriculture 121, 2531.
Banakar, A, Sadeghi, M and Shushtari, A 2016. An intelligent device for diagnosing avian diseases: Newcastle, infectious bronchitis, avian influenza. Computers and Electronics in Agriculture 127, 744753.
Ben Sassi, N, Averós, X and Estevez, I 2016. Technology and poultry welfare. Animals 6, 62. doi: 10.3390/ani6100062.
Berckmans, D 2014. Precision livestock farming technologies for welfare management in intensive livestock systems. Revue Scientifique et Technique – Office International des Epizooties 33, 189196.
Buijs, S, Booth, F, Richards, G, McGaughey, L, Nicol, CJ, Edgar, J and Tarlton, JF 2018. Behavioural and physiological responses of laying hens to automated monitoring equipment. Applied Animal Behaviour Science 199, 1723.
Campbell, DLM, Hinch, GN, Downing, JA and Lee, C 2016. Fear and coping styles of outdoor-preferring, moderate-outdoor and indoor-preferring free-range laying hens. Applied Animal Behaviour Science 185, 7377.
Campbell, DLM, Hinch, GN, Downing, JA and Lee, C 2018a. Early enrichment in free-range laying hens: effects on ranging behaviour, welfare and response to stressors. Animal 12, 575584.
Campbell, DLM, Hinch, GN, Dyall, TR, Warin, L, Little, BA and Lee, C 2017. Outdoor stocking density in free-range laying hens: radio-frequency identification of impacts on range use. Animal 11, 121130.
Campbell, DLM, Talk, AC, Loh, ZA, Dyall, TR and Lee, C 2018b. Spatial cognition and range use in free-range laying hens. Animals 8, 26. doi: 10.3390/ani8020026.
Chien, YR and Chen, YX 2018. An RFID-based smart nest box: an experimental study of laying performance and behavior of individual hens. Sensors 18, 859. doi: 10.3390/s18030859.
Colles, FM, Cain, RJ, Nickson, T, Smith, AL, Roberts, SJ, Maiden, MCJ, Lunn, D and Dawkins, MS 2016. Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobacter. Proceedings of the Royal Society B-Biological Sciences 283, 20152323. doi: 10.1098/rspb.2015.2323.
Dawkins, MS, Roberts, SJ, Cain, RJ, Nickson, T and Donnelly, CA 2017. Early warning of footpad dermatitis and hockburn in broiler chicken flocks using optical flow, bodyweight and water consumption. Veterinary Record 180, 499U60.
De Jong, IC, Hindle, VA, Butterworth, A, Engel, B, Ferrari, P, Gunnink, H, Moya, TP, Tuyttens, FAM and van Reenen, CG 2016. Simplifying the Welfare Quality ((R)) assessment protocol for broiler chicken welfare. Animal 10, 117127.
Fernandez, AP, Norton, T, Tullo, E, van Hertem, T, Youssef, A, Exadaktylos, V, Vranken, E, Guarino, M and Berckmans, D 2018. Real-time monitoring of broiler flock’s welfare status using camera-based technology. Biosystems Engineering 173, 103114.
Fontana, I, Tullo, E, Butterworth, A and Guarino, M 2015. An innovative approach to predict the growth in intensive poultry farming. Computers and Electronics in Agriculture 119, 178183.
Fontana, I, Tullo, E, Carpentier, L, Berckmans, D, Butterworth, A, Vranken, E, Norton, T, Berckmans, D and Guarino, M 2017. Sound analysis to model weight of broiler chickens. Poultry Science 96, 39383943.
Fontana, I, Tullo, E, Scrase, A and Butterworth, A 2016. Vocalisation sound pattern identification in young broiler chickens. Animal 10, 15671574.
Fraess, GA, Bench, CJ and Tierney, KB 2016. Automated behavioural response assessment to a feeding event in two heritage chicken breeds. Applied Animal Behaviour Science 179, 7481.
Gebhardt-Henrich, SG and Frohlich, EKF 2015. Early onset of laying and bumblefoot favor keel bone fractures. Animals 5, 11921206.
Gebhardt-Henrich, SG, Toscano, MJ and Frohlich, EKF 2014. Use of outdoor ranges by laying hens in different sized flocks. Applied Animal Behaviour Science 155, 7481.
Hartcher, KM, Hickey, KA, Hemsworth, PH, Cronin, GM, Wilkinson, SJ and Singh, M 2016. Relationships between range access as monitored by radio frequency identification technology, fearfulness, and plumage damage in free-range laying hens. Animal 10, 847853.
Kashiha, M, Bahr, C, Vranken, E, Hong, SW and Berckmans, D 2014. Monitoring system to detect problems in broiler houses based on image processing. In Proceedings International Conference of Agricultural Engineering, 6–10 July 2014, Zurich, Switzerland, pp. 610.
Larsen, H, Cronin, GM, Gebhardt-Henrich, SG, Smith, CL, Hemsworth, PH and Rault, JL 2017. Individual ranging behaviour patterns in commercial free-range layers as observed through RFID tracking. Animals 7, 21. doi: 10.3390/ani7030021.
Larsen, H, Hemsworth, PH, Cronin, GM, Gebhardt-Henrich, SG, Smith, CL and Rault, JL 2018. Relationship between welfare and individual ranging behaviour in commercial free-range laying hens. Animal 12, 23562364.
Lee, J, Noh, B, Jang, S, Park, D, Chung, Y and Chang, HH 2015. Stress detection and classification of laying hens by sound analysis. Asian-Australasian Journal of Animal Sciences 28, 592598.
Li, GM, Li, BM, Shi, ZX, Zhao, Y and Ma, H 2018. Design and evaluation of a lighting preference test system for laying hens. Computers and Electronics in Agriculture 147, 118125.
Li, L, Zhao, Y, Oliveira, J, Verhoijsen, W, Liu, K and Xin, H 2017. A UHF RFID system for studying individual feeding and nesting behaviors of group-housed laying hens. Transactions of the ASABE 60, 13371347.
Manteuffel, G, Puppe, B and Schon, PC 2004. Vocalization of farm animals as a measure of welfare. Applied Animal Behaviour Science 88, 163182.
McGrath, N, Dunlop, R, Dwyer, C, Burman, O and Phillips, CJC 2017. Hens vary their vocal repertoire and structure when anticipating different types of reward. Animal Behaviour 130, 7996.
Mortensen, AK, Lisouski, P and Ahrendt, P 2016. Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture 123, 319326.
Nakarmi, AD, Tang, L and Xin, H 2014. Automated tracking and behavior quantification of laying hens using 3D computer vision and radio frequency identification technologies. Transactions of the ASABE 57, 14551472.
Oliveira, JL, Xin, H and Wu, H 2018. Impact of feeder space on laying hen feeding behavior and production performance in enriched colony housing. Animal 13, 374383.
Pereira, EM, Naas, ID and Garcia, RG 2015. Vocalization of broilers can be used to identify their sex and genetic strain. Engenharia Agricola 35, 192196.
Pu, HT, Lian, J and Fan, MQ 2018. Automatic recognition of flock behavior of chickens with convolutional neural network and kinect sensor. International Journal of Pattern Recognition and Artificial Intelligence 32, 1850023. doi: 10.1142/S0218001418500234.
Riddle, ER, Ali, ABA, Campbell, DLM and Siegford, JM 2018. Space use by 4 strains of laying hens to perch, wing flap, dust bathe, stand and lie down. PLoS ONE 13, e190532.
Ringgenberg, N, Frohlich, EKF, Harlander-Matauschek, A, Toscano, MJ, Wurbel, H and Roth, BA 2015. Effects of variation in nest curtain design on pre-laying behaviour of domestic hens. Applied Animal Behaviour Science 170, 3443.
Sadeghi, M, Banakar, A, Khazaee, M and Soleimani, MR 2015. An intelligent procedure for the detection and classification of chickens infected by clostridium perfringens based on their vocalization. Brazilian Journal of Poultry Science 17, 537544.
Sales, GT, Green, AR, Gates, RS, Brown-Brandl, TM and Eigenberg, RA 2015. Quantifying detection performance of a passive low-frequency RFID system in an environmental preference chamber for laying hens. Computers and Electronics in Agriculture 114, 261268.
Siegford, JM, Berezowski, J, Biswas, SK, Daigle, CL and Gebhardt-Henrich, SG 2016. Assessing activity and location of individual laying hens in large groups using modern technology. Animals 6, 10. doi: 10.3390/ani6020010.
Sih, A, Bell, AM, Johnson, JC and Ziemba, RE 2004. Behavioral syndromes: an integrative overview. Quarterly Review of Biology 79, 241277.
Silvera, AM, Knowles, TG, Butterworth, A, Berckmans, D, Vranken, E and Blokhuis, HJ 2017. Lameness assessment with automatic monitoring of activity in commercial broiler flocks. Poultry Science 96, 20132017.
Stadig, LM, Ampe, B, Rodenburg, TB, Reubens, B, Maselyne, J, Zhuang, SJ, Criel, J and Tuyttens, FAM 2018a. An automated positioning system for monitoring chickens’ location: accuracy and registration success in a free-range area. Applied Animal Behaviour Science 201, 3139.
Stadig, LM, Rodenburg, TB, Ampe, B, Reubens, B and Tuyttens, FAM 2018b. An automated positioning system for monitoring chickens’ location: effects of wearing a backpack on behaviour, leg health and production. Applied Animal Behaviour Science 198, 8388.
Taylor, PS, Hemsworth, PH, Groves, PJ, Gebhardt-Henrich, SG and Rault, JL 2018. Ranging behavior relates to welfare indicators pre- and post-range access in commercial free-range broilers. Poultry Science 97, 18611871.
Tullo, E, Fontana, I, Diana, A, Norton, T, Berckmans, D and Guarino, M 2017. Application note: labelling, a methodology to develop reliable algorithm in PLF. Computers and Electronics in Agriculture 142, 424428.
Valletta, JJ, Torney, C, Kings, M, Thornton, A and Madden, J 2017. Applications of machine learning in animal behaviour studies. Animal Behaviour 124, 203220.
Van Hertem, T, Rooijakkers, L, Berckmans, D, Fernandez, AP, Norton, T, Berckmans, D and Vranken, E 2017. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Computers and Electronics in Agriculture 138, 110.
Wang, C, Chen, H, Zhang, X and Meng, C 2016. Evaluation of a laying-hen tracking algorithm based on a hybrid support vector machine. Journal of Animal Science and Biotechnology 7, 60. doi: 10.1186/s40104-016-0119-3.
Wathes, CM, Kristensen, HH, Aerts, JM and Berckmans, D 2008. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Computers and Electronics in Agriculture 64, 210.
Youssef, A, Exadaktylos, V and Berckmans, DA 2015. Towards real-time control of chicken activity in a ventilated chamber. Biosystems Engineering 135, 3143.
Zaninelli, M, Costa, A, Tangorra, FM, Rossi, L, Agazzi, A and Savoini, G 2015. Preliminary evaluation of a nest usage sensor to detect double nest occupations of laying hens. Sensors 15, 26802693.
Zaninelli, M, Redaelli, V, Luzi, F, Bontempo, V, Dell’Orto, V and Savoini, G 2017. A monitoring system for laying hens that uses a detection sensor based on infrared technology and image pattern recognition. Sensors 17, 1195. doi: 10.3390/s17061195.
Zaninelli, M, Redaelli, V, Luzi, F, Mitchell, M, Bontempo, V, Cattaneo, D, Dell′Orto, V and Savoini, G 2018. Development of a machine vision method for the monitoring of laying hens and detection of multiple nest occupations. Sensors 18, 132. doi: 10.3390/s18010132.
Zaninelli, M, Redaelli, V, Tirloni, E, Bernardi, C, Dell’Orto, V and Savoini, G 2016. First results of a detection sensor for the monitoring of laying hens reared in a commercial organic egg production farm based on the use of infrared technology. Sensors 16, 1757. doi: 10.3390/s16101757.
Zhang, FY, Hu, YM, Chen, LC, Guo, LH, Duan, WJ and Wang, L 2016. Monitoring behavior of poultry based on RFID radio frequency network. International Journal of Agricultural and Biological Engineering 9, 139147.
Zhuang, XL, Bi, MN, Guo, JL, Wu, SY and Zhang, TM 2018. Development of an early warning algorithm to detect sick broilers. Computers and Electronics in Agriculture 144, 102113.

Keywords

Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming

  • N. Li (a1), Z. Ren (a1), D. Li (a1) and L. Zeng (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed