Skip to main content Accessibility help
×
Home

A rapid shift to high-grain diet results in dynamic changes in rumen epimural microbiome in sheep

  • H. Seddik (a1), L. Xu (a1), Y. Wang (a1) and S. Y. Mao (a1)

Abstract

The rapid shift to high-grain (HG) diets in ruminants can affect the function of the rumen epithelium, but the dynamic changes in the composition of the epithelium-associated (epimural) bacterial community in sheep still needs further investigation. Twenty male lambs were randomly allocated to four groups (n = 5). Animals of the first group received hay diet and represented a control group (CON). Simultaneously, animals in the other three groups (HG groups) were rapidly shifted to an HG diet (60% concentrate)which continued for 7 (HG7), 14 (HG14) and 28 (HG28) days, correspondingly. Results showed that ruminal pH dramatically decreased due to the rapid shift to the HG diet (P <0.001), while, the concentrations of butyrate (P <0.001), lactate (P = 0.001), valerate (P = 0.008) and total volatile fatty acids (P = 0.001) increased. Diversity estimators showed a dramatic decrease after the shift without recovering as the HG feeding continued. The principal coordinates analysis showed that CON group clustered separately from all HG groups with the presence of significant difference only between HG7 and HG28 (P = 0.034). The non-parametric multivariate analysis (npmv R-package) deduced that the primary significant differences in phyla and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-predicted Kyoto Encyclopedia of Genes and Genomes (KEGGs) was attributed mainly to the diet composition (P <0.001, P = 0.001) compared to its application period (P = 0.140, 0.545) which showed a significant effect only on the genus (P = 0.001) and the operational taxonomic units (OTUs) level (P = 0.011). The Kruskal–Wallis test deduced that six phyla showed a significant effect due to the shift in diet composition. At the genus level, HG feeding altered the abundance of 12 taxa, four of which showed a significant variation due to the duration of the HG diet application. Similarly, we found that 21 OTUs showed significant variations due to the duration of the HG diet application. Furthermore, the genes abundance predicted by PICRUSt revealed that the HG feeding significantly affected seven metabolic pathways identified in the KEGG. Particularly, the abundance of gene families associated with carbohydrates metabolism were significantly higher in HG feeding groups (P = 0.027). Collectively, these results revealed that the rapid transition to an HG diet causes dramatic alterations in ruminal fermentation and the composition and function of ruminal epithelium-associated microbiome in sheep, while, the duration of the HG diet application causes drastic alterations to the abundance of some species.

Copyright

Corresponding author

References

Hide All
Burchett, WW, Ellis, AR, Harrar, S and Bathke, A 2017. Nonparametric inference for multivariate data: the R package npmv. Journal of Statistical Software 76, 118.
Cheng, KJ and Costerton, JW 1980. Adherent rumen bacteria – their role in the digestion of plant material, urea and epithelial cells. In Digestive physiology and metabolism in ruminants: proceedings of the 5th international symposium on ruminant physiology, held at Clermont-Ferrand, on 3rd–7th September, 1979 (eds. Y Ruckebusch and P Thivend), pp. 227250. Springer, Netherlands, Dordrecht, Netherlands.
Gao, X and Oba, M 2014. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Journal of Dairy Science 97, 30063016.
Górka, P, Schurmann, B, Walpole, M, Błońska, A, Li, S, Plaizier, J, Kowalski, Z and Penner, G 2017. Effect of increasing the proportion of dietary concentrate on gastrointestinal tract measurements and brush border enzyme activity in Holstein steers. Journal of Dairy Science 100, 45394551.
Indikova, I, Humphrey, TJ and Hilbert, F 2015. Survival with a helping hand: campylobacter and microbiota. Frontiers in Microbiology 6, 1266.
Jiao, J, Huang, J, Zhou, C and Tan, Z 2015. Taxonomic identification of ruminal epithelial bacterial diversity during rumen development in goats. Applied and Environmental Microbiology 81, 35023509.
Jin, D, Zhao, S, Zheng, N, Bu, D, Beckers, Y, Denman, SE, McSweeney, CS and Wang, J 2017. Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification. Frontiers in Microbiology 8, 385.
Kellermayer, R, Dowd, SE, Harris, RA, Balasa, A, Schaible, TD, Wolcott, RD, Tatevian, N, Szigeti, R, Li, Z, Versalovic, J and Smith, CW 2011. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. The FASEB Journal 25, 14491460.
Kelly, WJ, Cookson, AL, Altermann, E, Lambie, SC, Perry, R, Teh, KH, Otter, DE, Shapiro, N, Woyke, T and Leahy, SC 2016. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract. Scientific Reports 6, 30768.
Kleen, JL, Hooijer, GA, Rehage, J and Noordhuizen, JPTM 2003. Subacute ruminal acidosis (SARA): a review. Journal of Veterinary Medicine Series A 50, 406414.
Klindworth, A, Pruesse, E, Schweer, T, Peplies, J, Quast, C, Horn, M and Glöckner, FO 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41, e1e1.
Laanbroek, HJ, Abee, T and Voogd, IL 1982. Alcohol conversion by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Archives of Microbiology 133, 178184.
Lamendella, R, Santo Domingo, JW, Ghosh, S, Martinson, J and Oerther, DB 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiology 11, 103.
Lima, FS, Oikonomou, G, Lima, SF, Bicalho, MLS, Ganda, EK, de Oliveira Filho, JC, Lorenzo, G, Trojacanec, P and Bicalho, RC 2015. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Applied and Environmental Microbiology 81, 13271337.
Lin, M, Guo, W, Meng, Q, Stevenson, DM, Weimer, PJ and Schaefer, DM 2013. Changes in rumen bacterial community composition in steers in response to dietary nitrate. Applied Microbiology and Biotechnology 97, 87198727.
Liu, JH, Xu, TT, Liu, YJ, Zhu, WY and Mao, SY 2013. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 305, R232R241.
Mann, E, Wetzels, SU, Wagner, M, Zebeli, Q and Schmitz-Esser, S 2018. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Frontiers in Microbiology 9, 43.
Mao, S, Zhang, M, Liu, J and Zhu, W 2015. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Scientific Reports 5, 16116.
Mao, S, Zhang, R, Wang, D and Zhu, W 2013. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 24, 1219.
McCowan, R, Cheng, K, Bailey, C and Costerton, J 1978. Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Applied and Environmental Microbiology 35, 149155.
Mertens, D 1997. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science 80, 14631481.
Morotomi, M, Nagai, F and Watanabe, Y 2012. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 62, 144149.
Ni, YH, Chua, HH and Chou, HCC 2015. 166 Dysbiosis of syntrophococcus and Bifidobacterium in infancy is the signature of allergic diseases development. Gastroenterology 148, S-44S-44.
Petri, R, Schwaiger, T, Penner, G, Beauchemin, K, Forster, R, McKinnon, J and McAllister, T 2013. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Applied and Environmental Microbiology 79, 37443755.
Plaizier, J, Krause, D, Gozho, G and McBride, B 2008. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. The Veterinary Journal 176, 2131.
Plaizier, JC, Li, S, Tun, HM and Khafipour, E 2017. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Frontiers in Microbiology 7, 2128.
Pourazad, P, Khiaosa-Ard, R, Qumar, M, Wetzels, S, Klevenhusen, F, Metzler-Zebeli, B and Zebeli, Q 2016. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. Journal of Animal Science 94, 726738.
Russell, J, Garner, M and Flint, J 2002. Allisonella histiformans, sp. nov., a novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Systematic and Applied Microbiology 25, 498506.
Stewart, D 1977. Biochemical and biological studies on the lipopolysaccharide of Bacteroides nodosus. Research in veterinary science 23, 319325.
Wang, Y, Xu, L, Liu, J, Zhu, W and Mao, S 2017. A high grain diet dynamically shifted the composition of mucosa-associated microbiota and induced mucosal injuries in the colon of sheep. Frontiers in Microbiology 8, 2080.
Wetzels, SU, Mann, E, Metzler-Zebeli, BU, Pourazad, P, Qumar, M, Klevenhusen, F, Pinior, B, Wagner, M, Zebeli, Q and Schmitz-Esser, S 2016. Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle. Frontiers in Microbiology 7, 274.
Wetzels, SU, Mann, E, Pourazad, P, Qumar, M, Pinior, B, Metzler-Zebeli, BU, Wagner, M, Schmitz-Esser, S and Zebeli, Q 2017. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. Journal of Dairy Science 100, 18291844.
Ye, H, Liu, J, Feng, P, Zhu, W and Mao, S 2016. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Scientific Reports 6, 20329.
Ze, X, Duncan, SH, Louis, P and Flint, HJ 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal 6, 15351543.
Zhang, R, Ye, H, Liu, J and Mao, S 2017. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Applied Microbiology and Biotechnology 101, 69816992.
Zhao, L, Meng, Q, Ren, L, Liu, W, Zhang, X, Huo, Y and Zhou, Z 2015. Effects of nitrate addition on rumen fermentation, bacterial biodiversity and abundance. Asian-Australasian Journal of Animal Sciences 28, 1433.
Zhao, S, Wang, J and Bu, D 2014. Pyrosequencing-based profiling of bacterial 16 S rRNA genes identifies the unique Proteobacteria attached to the rumen epithelium of bovines. Journal of Dairy Science 97, 869870.

Keywords

Type Description Title
WORD
Supplementary materials

Seddik et al. supplementary material
Seddik et al. supplementary material 1

 Word (274 KB)
274 KB

A rapid shift to high-grain diet results in dynamic changes in rumen epimural microbiome in sheep

  • H. Seddik (a1), L. Xu (a1), Y. Wang (a1) and S. Y. Mao (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed