Skip to main content Accessibility help
×
×
Home

Predicting nutrient responses in poultry: future challenges

  • R. M. Gous (a1)

Abstract

Predicting the response of poultry to nutrients has progressed to a stage where it is now not only possible to predict voluntary feed intake accurately, but broiler feeds and feeding programmes may now be optimised using the more advanced simulation models. Development of such prediction models has stimulated useful and purposeful research targeted at filling the gaps in our knowledge of critical aspects of the theory incorporated into these models. The aim of this paper was to review some of these past developments, discuss the controversy that exists in designing and interpreting response experiments, and highlight some of the most recent challenges related to the prediction of responses to nutrients by poultry. These latter include differences, brought about by selection for diverse goals, that have become apparent between modern broiler strains in their responses in feed intake and mortality, which are not independent of level of feeding or strain of broiler, as was previously believed. Uniformity, an important quality criterion in broiler processing, is also not independent of level of feeding, and the effect may now be predicted using stochastic models. It is not yet clear whether breast meat yield, the carcass component of broilers yielding the highest returns, is a function of the strain of broiler or simply that of the protein weight of the bird when processed. An important aspect of response prediction is dealing with constraints to performance: whereas it is relatively straightforward to simulate the potential performance of a broiler, such performance is often constrained by the physical, social and infectious environment, among others, providing a challenge to modellers attempting to predict actual performance. Some of these constraints to potential performance have not yet been adequately described, but are now receiving attention, suggesting that nutrient responses in poultry have the potential to be more accurately predicted in the future.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predicting nutrient responses in poultry: future challenges
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predicting nutrient responses in poultry: future challenges
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predicting nutrient responses in poultry: future challenges
      Available formats
      ×

Copyright

Corresponding author

* E-mail: gous@ukzn.ac.za

References

Hide All
Answers.com 2006. Poultry slaughtering and processing. Retrieved November 2006 fromhttp:///answers.com/topic/poultry-slaughtering-and-processing.
Aviagen 2006. Ross broiler management manual. Aviagen Ltd, Newbridge, UK.
Berhe, ET and Gous, RMEffect of dietary protein content on allometric relationships between carcass portions and body protein in Cobb and Ross broilers. 2005. Proceedings of the 24th conference of South African branch of WPSA, Pretoria.
Blanco, OA and Gous, RM 2006. Considerations for representing micro-environmental conditions in simulation models for broiler chickens. In Mechanistic modelling in pig and poultry production (eds. Gous, RM, Morris, TR and Fisher, C), pp. 188-208. CABI, Wallingford, UK.
Blanco, OA, Gous, RM and Savage, MJ 2004. A simulation model for estimating the effect of warm micro-environmental conditions on the heat balance of a broiler. In Proceedings of the XII World Poultry Congress, Istanbul, Turkey. CD-rom.
Burnham, D, Emmans, GC and Gous, RM 1992. Isoleucine responses in broiler chickens. Interactions with leucine and valine. British Poultry Science 33, 71-87.
Clark, FA, Gous, RM and Morris, TR 1982. Response of broilers to well-balanced protein mixtures. British Poultry Science 23, 433-446.
Classen, HL 1990. Effects of increasing photoperiod length on broiler productivity and health. Proceedings of the Australian Poultry Science symposium, pp. 5561.
Cobb 2006. Cobb 500 management manual. Retrieved November 2006 fromhttp///cobb-vantress.com.
Corzo, A, McDaniel, CD, Kidd, MT, Miller, ER, Boren, BB and Puncher, BI 2004. Impact of dietary amino acid concentration on growth, carcass yield, and uniformity of broilers. Australian Journal of Agricultural Research 55, 1133-1138.
Decuypere, E, Buyse, J and Buyse, N 2000. Ascites in broiler chickens: exogenous and endogenous structural and functional causal factors. World's Poultry Science Journal 56, 367-377.
D'Mello, JPF 1982. A comparison of two empirical methods of determining amino acid requirements. World's Poultry Science Journal 38, 114-119.
D'Mello, JPF 1990. Lysine utilisation by broiler chicks. Proceedings of VIII European Poultry Conference, Barcelona, Spain, pp. 302305.
D'Mello, JPF 2003. Responses of growing poultry to amino acids. In Amino acids in animal nutrition second edition (ed. D'Mello, JPF), pp. 237-263. CABI Publishing, Wallingford, UK.
D'Mello, JPF and Lewis, D 1971. Amino acid interactions in chick nutrition. 4. Growth, food intake and plasma amino acid patterns. British Poultry Science 12, 345-358.
EFG Software 2006. Broiler growth model (version 6), Broiler nutrition optimiser (version 1), Pig growth model (version 2) and Pig nutrition optimiser (version 1). Retrieved August 2006 fromwww.efgsoftware.com.
Emmans, GC 1981. A model of the growth and feed intake of ad libitum fed animals, particularly poultry. In Computers in animal production (eds. Hillyer, GM, Whittemore, CTGunn, and RG), British Society of Animal Production occasional publication no. 5. pp. 103-110. BSAP, Edinburgh.
Emmans, GC 1994. Effective energy – a concept of energy utilisation applied across species. British Journal of Nutrition 71, 801-821.
Emmans, GC 1987. Growth, body composition and feed intake. World's Poultry Science Journal 43, 208-227.
Emmans, GC 1974. The effects of temperature on the performance of laying hens. In Energy requirements of poultry (eds. Morris, TR and Freeman, BM), pp. 79-90. British Poultry Science Ltd, Edinburgh.
Emmans, GC 1989. The growth of turkeys. In Recent advances in turkey science (eds Nixey, C and Grey, TC), pp. 135-166. Butterworths, London.
Ferguson, NS, Arnold, GA, Lavers, G and Gous, RM 2000a. The response of growing pigs to amino acids as influenced by environmental temperature. 1. Threonine. Animal Science 70, 287-297.
Ferguson, NS, Arnold, GA, Lavers, G and Gous, RM 2000b. The response of growing pigs to amino acids as influenced by environmental temperature. 2. Lysine. Animal Science 70, 299-306.
Ferguson, NS and Gous, RM 1997. The influence of heat production on voluntary food intake in growing pigs given protein-deficient diets. Animal Science 64, 365-378.
Ferguson, NS and Gous, RM 2002. The response of growing pigs to amino acids as influenced by environmental temperature: tryptophan. Animal Science 74, 103-110.
Ferguson, NS, Gous, RM and Emmans, GC 1997. Predicting the effects of animal variation on growth and food intake in growing pigs using simulation modelling. Animal Science 64, 513-522.
Fisher, C and Morris, TR 1970. The determination of the methionine requirement of laying pullets by a diet dilution technique. British Poultry Science 11, 67-82.
Fisher, C, Morris, TR and Jennings, RJ 1973. A model for the description and prediction of the response of laying hens to amino acid intake. British Poultry Science 14, 469-484.
Gous, RM and Berhe, ET 2006. Modelling populations for purposes of optimisation. In Mechanistic modelling in pig and poultry production (eds. Gous, RM, Morris, TR and Fisher, C), pp. 76-96. CABI, Wallingford, UK.
Gous, RM, Griessel, M and Morris, TR 1987. Effect of dietary energy concentration on the response of laying hens to amino acids. British Poultry Science 28, 427-436.
Gous, RM and Morris, TR 1985. Evaluation of a diet dilution technique for measuring the response of broiler chickens to increasing concentrations of lysine. British Poultry Science 26, 147-161.
Harper, AE 1964. Amino acid toxicities and imbalances. In Mammalian protein metabolism vol. II, (eds. Munro, HN and Allison, JB), pp. 87-134. Academic Press, New York.
Hillman, P and Scott, NR 1989. Energy budget of the chicken foot. Journal of Thermal Biology 14, 205-217.
Hillman, P, Scott, NR and Van Tienhoven, A 1982. Vasomotion in chicken foot: a dual innervation of arteriovenous anastomoses. American Journal of Physiology 242, R582-R590.
Johnston, SA and Gous, RM 2006. Modelling egg production in laying hens. In Mechanistic modelling in pig and poultry production (eds. Gous, RM, Morris, TR and Fisher, C), pp. 229-259. CABI, Wallingford, UK.
Kemp, C, Fisher, C and Kenny, MGenotype – nutrition interactions in broilers; response to balanced protein in two commercial strains. 2005. Proceedings of the 15th European symposium on poultry nutrition, Balatonfüred, Hungary, pp. 54–56.
Kidd, MT, Corzo, A, Hoehler, D, Kerr, BJ, Barber, SJ and Branton, SL 2004. Threonine needs of broiler chickens with different growth rates. Poultry Science 83, 1368-1375.
Lemme, A, Wijtten, PJ, Van Wichen, J, Petri, A and Langhout, DJ 2006. Responses of male growing broilers to increasing levels of balanced protein offered as coarse mash or pellets of varying quality. Poultry Science 85, 721-730.
Lewis, PD, Morris, TR and Perry, GC 2003. Effect of two opposing changes in photoperiod upon age at first egg in layer-hybrid pullets. Journal of Agricultural Science, Cambridge 140, 373-379.
McArthur, AJ 1981. Thermal insulation and heat loss from animals. In Environmental aspects of housing for animal production (ed. Clark, JA), pp. 37-60. Butterworths, London.
Morris, TR 1989. The interpretation of response data from animal feeding trials. In Recent developments in poultry nutrition (eds. Cole, DJA and Haresign, W), pp. 1-11. Butterworths, London.
Mount, LE 1979. Adaptation to thermal environment: man and his productive animals. Edward Arnold, London.
Pym, RAE and Solvyns, AJ 1979. Selection for food conversion in broilers: body composition of birds selected for increased body-weight gain, food consumption and food conversion ratio. British Poultry Science 20, 87-97.
Rogers, QR 1976. The nutritional and metabolic effects of amino acid imbalances. In Protein metabolism and nutrition (eds. Cole, DJA, Boorman, KN, Buttery, PJ, Lewis, D, Neale, RJ and Swan, H), pp. 279-301. Butterworths, London.
Sandberg, F, Emmans, GC and Kyriazakis, I 2006. A model for predicting food intake of growing animals during exposure to pathogens. Journal of Animal Science 84, 1552-1566.
Sandberg, F, Emmans, GC and Kyriazakis, I 2007. The effects of pathogen challenges on the performance of naïve and immune animals: the problem of prediction. Animal 1, 67-86.
Wellock, IJ, Emmans, GC and Kyriazakis, I 2006. The effects of social stressors on the performance of growing pigs. In Mechanistic modelling in pig and poultry production (eds. RM, Gous, Morris, TR and Fisher, C), pp. 54-75. CABI, Wallingford, UK.
Whittemore, CT 1976. A study of growth responses to nutrient inputs by modelling. Proceedings of the Nutrition Society 35, 383-391.
Whittemore, CT 1981. Animal production response prediction. In Computers in animal production (eds. Hillyer, GMWhittemore, CT and Gunn, RG), British Society of Animal Production occasional publication no. 5. pp. 47-64. BSAP, Edinburgh.
Whittemore, CT and Fawcett, R 1976. Theoretical aspects of a flexible model to simulate protein and lipid growth in pigs. Animal Production 22, 87-96.
Willmer, P, Stone, G and Johnston, L 2000. Environmental physiology of animals. Blackwell Science, Oxford.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed