Skip to main content Accessibility help

Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig

  • R. Saintilan (a1) (a2), L. Brossard (a3) (a4), B. Vautier (a3) (a4) (a5), P. Sellier (a1) (a2), J. Bidanel (a5), J. van Milgen (a3) (a4) and H. Gilbert (a1) (a2) (a6) (a7) (a8)...


Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI or FCR), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the precocity of growth (0.06±0.08). The parameter representing the quantity of feed at 50 kg BW showed a relatively high genetic correlation with RFI (0.49±0.14), and average protein deposition between 35 and 110 kg had the highest correlation with FCR (−0.76±0.08). Thus, growth and FI dynamics may be envisaged as breeding tools to improve feed efficiency. Furthermore, improvement of feed efficiency should be envisaged jointly with new feeding strategies.


Corresponding author


Hide All
Abegaz, S, van Wyk, JB and Olivier, JJ 2010. Estimation of genetic and phenotypic parameters of growth curve and their relationships with early growth and productivity in Horro Sheep. Archiv Tierzucht 53, 8594.
Barea, R, Dubois, S, Gilbert, H, Sellier, P, van Milgen, J and Noblet, J 2010. Energy utilization in pigs selected for high and low residual feed intake. Journal of Animal Science 88, 20622072.
Black, J 2009. Models to predict feed intake. In Voluntary feed intake in pigs (ed. D Torrallardona and E Roura), pp 323351. Wageningen Academic Publishers, Wageningen, The Netherlands.
Brossard, L, Gilbert, H, Billon, Y and van Milgen, J 2012. Effet d’une sélection divergente pour la consommation journalière résiduelle chez le porc en croissance sur la réponse à une carence en acides aminés. Journées de la Recherche Porcine 44, 165170.
Brossard, L, van Milgen, J, Lannuzel, PY, Bertinnoti, R and Rivest, J 2006. Analyse des relations entre croissance et ingestion à partir de cinétiques individuelles: implications dans la définition de profils animaux pour la modélisation. Journées de la Recherche Porcine 38, 217224.
Cai, W, Casey, DS and Dekkers, JCM 2008. Selection response and genetic parameters for residual feed intake in Yorkshire swine. Journal of Animal Science 86, 287298.
Cai, W, Kaiser, MS and Dekkers, JCM 2012. Bayesian analysis of the effect of selection for residual feed intake on growth and feed intake curves in Yorkshire swine. Journal of Animal Science 90, 127141.
Clutter, AC 2011. Genetics of performance traits. In The genetics of the pig, 2nd edition (ed. MF Rothschild and A Ruvinsky), pp. 325354. CABI Publishing, Wallingford, UK.
Daumas, G 2008. Taux de muscle des pièces et appréciation de la composition corporelle des carcasses. Journées de la Recherche Porcine 40, 6168.
Doeschl-Wilson, AB, Knap, PW, Kinghorn, BP and van der Steen, HAM 2007. Using mechanistic animal growth models to estimate genetic parameters of biological traits. Animal 1, 489499.
Dunshea, FR, Allison, JRD, Bertram, M, Boler, DD, Brossard, L, Campbell, R, Crane, JP, Hennessy, DP, Huber, L, de Lange, C, Ferguson, N, Matzat, P, McKeith, F, PJU, Moraes, Mullan, BP, Noblet, J, Quiniou, N and Tokach, M 2013. The effect of immunization against GnRF on nutrient requirements of male pigs: a review. Animal 7, 17691778.
Faure, J, Lefaucheur, L, Bonhomme, N, Ecolan, P, Meteau, K, Metayer Coustard, S, Kouba, M, Gilbert, H and Lebret, B 2013. Consequences of divergent selection for residual feed intake in pigs on muscle energy metabolism and meat quality. Meat Science 93, 3745.
Ferguson, NS and Gous, RM 1993. Evaluation of pig genotypes: 1. Theoretical aspects of measuring genetic parameters. Animal Production 56, 233243.
Fowler, VR, Bichard, M and Pease, A 1976. Objectives in pig breeding. Animal Production 23, 365387.
Gilbert, H, Bidanel, JP, Billon, Y, Lagant, H, Guillouet, P, Sellier, P, Noblet, J and Hermesch, S 2012. Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig. Journal of Animal Science 90, 10971108.
Gilbert, H, Bidanel, JP, Gruand, J, Caritez, J, Billon, Y, Guillouet, P, Lagant, H, Noblet, J and Sellier, P 2007. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. Journal of Animal Science 85, 31823188.
Gilbert, H, Al Aïn, S, Sellier, P, Lagant, H, Billon, Y, Bidanel, J-P, Guillouet, P, Noblet, J, van Milgen, J and Brossard, L 2009. Relations génétiques entre efficacité alimentaire et cinétiques de croissance et d'ingestion chez le porc Large White. Journées de la Recherche Porcine 41, 16.
InraPorc® 2006. A model and decision support tool for the nutrition of growing pigs, version INRA-UMR PEGASE, Saint-Gilles, France. Retrieved November 15, 2011, from
Kanis, E, de Greef, KH, Hiemstra, A and van Arendonk, JA 2005. Breeding for societally important traits in pigs. Journal of Animal Science 83, 948957.
Kloareg, M, Noblet, J and van Milgen, J 2006. Estimation of whole body lipid mass in finishing pigs. Animal Science 82, 241251.
Koivula, M, Sevon-Aimonen, M-L, Strandén, I, Matilainen, K, Serenius, T, Stalder, KJ and Mäntysaari, EA 2008. Genetic (co)variances and breeding value estimation of Gompertz growth curve parameters in Finnish Yorkshire boars, gilts and barrows. Journal of Animal Breeding and Genetics 125, 168175.
Le Naou, T, Le Floc’h, N, Louveau, I, Gilbert, H and Gondret, F 2012. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs. Journal of Animal Science 90, 47714780.
Métayer, A and Daumas, G 1998. Estimation par découpe de la teneur en viande maigre des carcasses de porc. Journées de la Recherche Porcine 30, 711.
Meunier-Salaün, MC, Guérin, C, Billon, Y, Priet, A, Sellier, P, Noblet, J and Gilbert, H 2014. Divergent selection for residual feed intake in group-housed growing pigs: characteristics of physical and behavioural activity according to line and sex. Animal, first published online 24 July 2014, doi:10.1017/S1751731114001839.
Meyer, K 2006. ‘WOMBAT’ – digging deep for quantitative genetic analyses by restricted maximum likelihood. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo Horizonte, Brazil, pp. 27–14.
Mignon-Grasteau, S, Beaumont, C, Le Bihan-Duval, E, Poivey, JP, de Rochembeau, H and Ricard, FH 1999. Genetic parameters of growth curve parameters in male and female chicken. British Poultry Science 40, 4451.
N’Dri, AL, Mignon-Grasteau, S, Sellier, N, Tixier-Boichard, M and Beaumont, C 2006. Genetic relationships between feed conversion ratio, growth curve and body composition in slow-growing chickens. British Poultry Science 47, 273280.
Pomar, C, Hauschild, L, Zhang, G-H, Pomar, J and Lovatto, PA 2009. Applying precision feeding techniques in growing-finishing pigs operations. Revista Brasileira de Zootecnia 38, 226237.
Pomar, C, Hauschild, L, Zhang, GH, Pomar, J and Lovatto, PA 2010. Precision feeding can significantly reduce feeding cost and nutrient excretion in growing animals. In Modelling nutrition digestion and utilization in farm animals (ed. D Sauvant, J van Milgen, P Faverdin and N Friggens), pp 327334. Wageningen Academic Publishers, Wageningen, The Netherlands.
Quiniou, N, Courboulay, V, Salaün, Y and Chevillon, P 2010. Conséquences de la non castration des porcs mâles sur les performances de croissance et le comportement: comparaison avec les mâles castrés et les femelles. Journées de la Recherche Porcine 42, 113118.
Saintilan, R, Mérour, I, Brossard, L, Tribout, T, Dourmad, JY, Sellier, P, Bidanel, J, van Milgen, J and Gilbert, H 2013. Genetics of residual feed intake in growing pigs: relationships with production traits, and nitrogen and phosphorus excretion. Journal of Animal Science 91, 25422554.
SAS Institute 2010. Statistical analysis system release 8.01. SAS Institute Inc., Cary, NC, USA.
Shirali, M, Doeschl-Wilson, A, Knap, PW, Kanis, E, Duthie, C, van Arendonk, JAM and Roehe, R 2014. Growth modeling for energy and nitrogen efficiency. In Improvement of energy and nitrogen utilisation in pork production: genetics and growth models. PhD Thesis, Wageningen University, Wageningen, The Netherlands.
van Milgen, J, Valancogne, A, Dubois, S, Dourmad, JY, Seve, B and Noblet, J 2008. InraPorc: a model and decision support tool for the nutrition of growing pigs. Animal Feed Science and Technology 143, 387405.
Vautier, B, Brossard, L, van Milgen, J and Quiniou, N 2013. Accounting for variability among individual pigs in deterministic growth models. Animal 7, 12651273.
Wellock, IJ, Emmans, GC and Kyriazakis, I 2004. Describing and predicting potential growth in the pig. Animal Science 78, 379388.


Type Description Title
Supplementary materials

Saintilan Supplementary Material
Figure S1

 Word (74 KB)
74 KB
Supplementary materials

Saintilan Supplementary Material
Figure S2

 Word (74 KB)
74 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed