Skip to main content Accessibility help
×
Home

Pasture intake and milk production of dairy cows rotationally grazing on multi-species swards

  • A. I. Roca-Fernández (a1) (a2), J. L. Peyraud (a1) (a2), L. Delaby (a1) (a2) and R. Delagarde (a1) (a2)

Abstract

Increasing plant species diversity has been proposed as a means for enhancing annual pasture productivity and decreasing seasonal variability of pasture production facing more frequent drought scenarios due to climate change. Few studies have examined how botanical complexity of sown swards affects cow performance. A 2-year experiment was conducted to determine how sward botanical complexity, from a monoculture of ryegrass to multi-species swards (MSS) (grasses-legumes-forb), affect pasture chemical composition and nutritive value, pasture dry matter (DM) intake, milk production and milk solids production of grazing dairy cows. Five sward species: perennial ryegrass (L as Lolium), white clover and red clover (both referred to as T as Trifolium because they were always sown together), chicory (C as Cichorium) and tall fescue (F as Festuca) were assigned to four grazing treatments by combining one (L), three (LT), four (LTC) or five (LTCF) species. Hereafter, the LT swards are called mixed swards as a single combination of ryegrass and clovers, whereas LTC and LTCF swards are called MSS as a combination of at least four species from three botanical families. The experimental area (8.7 ha) was divided into four block replicates with a mineral nitrogen fertilisation of 75 kg N/ha per year for each treatment. In total, 13 grazing rotations were carried out by applying the same grazing calendar and the same pasture allowance of 19 kg DM/cow per day above 4 cm for all treatments. Clover represented 20% of DM for mixed and MSS swards; chicory represented 30% of DM for MSS and tall fescue represented 10% of DM for LTCF swards. Higher milk production (+1.1 kg/day) and milk solids production (+0.08 kg/day) were observed for mixed swards than for ryegrass swards. Pasture nutritive value and pasture DM intake were unaffected by the inclusion of clover. Pasture DM, organic matter and NDF concentrations were lower for MSS than for mixed swards. Higher milk production (+0.8 kg/day), milk solids production (+0.04 kg/day) and pasture DM intake (+1.5 kg DM/day) were observed for MSS than for mixed swards. These positive effects of MSS were observed for all seasons, but particularly during summer where chicory proportion was the highest. In conclusion, advantages of grazing MSS on cow performance were due to the cumulative effect of improved pasture nutritive value and increased pasture DM intake that raised milk production and milk solids production.

Copyright

Corresponding author

References

Hide All
Aufrère, J and Michalet-Doreau, B 1988. Comparison of methods for predicting digestibility of feeds. Animal Feed Science and Technology 20, 203218.
Barry, TN 1998. The feeding value of chicory (Cichorium intybus) for ruminant livestock. Journal of Agricultural Science 131, 251257.
Cabrera-Estrada, JI, Delagarde, R, Faverdin, P and Peyraud, JL 2004. Dry matter intake and eating rate of grass by dairy cows is restricted by internal, but not external water. Animal Feed Science and Technology 114, 5974.
Chapman, DF, Tharmaraj, J and Nie, ZN 2008. Milk-production potential of different sward types in a temperate southern Australian environment. Grass and Forage Science 63, 221233.
Deak, A, Hall, MH and Sanderson, MA 2009. Grazing schedule effect on forage production and nutritive value of diverse forage mixtures. Agronomy Journal 101, 408414.
Dewhurst, RJ, Delaby, L, Moloney, A, Boland, T and Lewis, E 2009. Nutritive value of forage legumes used for grazing and silage. Irish Journal of Agricultural and Food Research 48, 167187.
Harris, SL, Auldist, MJ, Clark, DA and Jansen, EBL 1998. Effect of white clover content in the diet on herbage intake, milk production and milk composition of New Zealand dairy cows housed indoors. Journal of Dairy Research 65, 389400.
Harris, SL, Clark, DA, Auldist, MJ, Waugh, CD and Laboyrie, PG 1997. Optimum white clover content for dairy pastures. Proceedings of the New Zealand Grassland Association 59, 2933.
Høgh-Jensen, H, Nielsen, B and Milan-Thamsborg, S 2006. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. European Journal of Agronomy 24, 247256.
Institut National de la Recherche Agronomique (INRA) 2007. Alimentation des bovins, ovins et caprins. Besoins des animaux, valeur des aliments, Tables INRA 2007. Editions QUAE, Versailles, France.
Li, G and Kemp, PD 2005. Forage chicory (Cichorium intybus L.): a review of its agronomy and animal production. Advances in Agronomy 88, 187222.
Lowe, KF, Bowdler, TM, Casey, ND and Moss, RJ 1999. Performance of temperate perennial pastures in the Australian subtropics. 2. Milk production. Australian Journal of Experimental Agriculture 39, 677683.
Lüscher, A, Mueller-Harvey, I, Soussana, JF, Rees, RM and Peyraud, JL 2014. Potential of legume-based grassland-livestock systems in Europe: a review. Grass and Forage Science 69, 206228.
Marley, CL, Fychan, R, Scott, MB, Davies, JW and Sanderson, R 2013. Yield, nitrogen and mineral content of chicory compared with perennial ryegrass, red clover and white clover over two harvest years. Grassland Science in Europe 18, 249251.
Minnee, EMK, Clark, CEF, McAllister, TB, Hutchinson, KJ and Lee, JM 2012. Chicory and plantain as feeds for dairy cows in late lactation. Proceedings of the 5th Australasian Dairy Science Symposium, Melbourne, Australia, pp. 426–428.
Morel, I, Schmid, E, Soney, C, Aragon, A and Dufey, PA 2014. Influence of ryegrass alone or blended with clover and chicory on feed intake and growth performance of steers. Grassland Science in Europe 19, 731733.
Muir, SK, Ward, GN and Jacobs, JL 2014. Milk production and composition of mid-lactation cows consuming perennial ryegrass- and chicory-based diets. Journal of Dairy Science 97, 10051015.
Niderkorn, V, Martin, C and Baumont, R 2014. Associative effects between forage species on intake and digestive efficiency in sheep. Grassland Science in Europe 19, 734736.
Pérez-Prieto, LA and Delagarde, R 2013. Meta-analysis of the effect of pasture allowance on pasture intake, milk production, and grazing behaviour of dairy cows grazing temperate grasslands. Journal of Dairy Science 96, 66716689.
Pérez-Ramírez, E, Peyraud, JL and Delagarde, R 2012. N-alkanes vs. ytterbium/faecal index as two methods for estimating herbage intake of dairy cows fed on diets differing in the herbage: maize silage ratio and feeding level. Animal 6, 232244.
Peyraud, JL 1993. Comparaison de la digestion du trèfle blanc et des graminées prairiales chez la vache laitière. Fourrages 135, 465473.
Phillips, CJC and James, NL 1998. The effects of including white clover in perennial ryegrass swards and the height of mixed swards on the milk production, sward selection and ingestive behaviour of dairy cows. Animal Science 67, 195202.
Ribeiro-Filho, HMN, Delagarde, R and Peyraud, JL 2003. Inclusion of white clover in strip-grazed perennial ryegrass pastures: herbage intake and milk yield of dairy cows at different ages of pasture regrowth. Animal Science 77, 499510.
Ribeiro-Filho, HMN, Delagarde, R and Peyraud, JL 2005. Herbage intake and milk yield of dairy cows grazing perennial ryegrass swards or white clover/perennial ryegrass swards at low- and medium-herbage allowances. Animal Feed Science and Technology 119, 1327.
Sanderson, MA 2010. Nutritive value and herbage accumulation rates of pastures sown to grass, legume and chicory mixtures. Agronomy Journal 102, 728733.
Sanderson, MA, Soder, KJ, Muller, LD, Klement, KD, Skinner, RH and Goslee, SC 2005. Forage mixture productivity and botanical composition in pastures grazed by dairy cattle. Agronomy Journal 97, 14651471.
Skinner, RH 2008. Yield, root growth, and soil water content in drought-stressed pasture mixtures containing chicory. Crop Science 48, 380388.
Soder, KJ, Sanderson, MA, Stack, JL and Muller, LD 2006. Intake and performance of lactating cows grazing diverse forage mixtures. Journal of Dairy Science 89, 21582167.
Statistical Analysis System Institute (SAS) 1999. User’s guide, version 8. SAS Institute Inc., Cary, NC, 3884 pp.
Totty, VK, Greenwood, SL, Bryant, RH and Edwards, GR 2013. Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures. Journal of Dairy Science 96, 141149.

Keywords

Type Description Title
WORD
Supplementary materials

Roca-Fernández supplementary material
Roca-Fernández supplementary material

 Word (33 KB)
33 KB

Pasture intake and milk production of dairy cows rotationally grazing on multi-species swards

  • A. I. Roca-Fernández (a1) (a2), J. L. Peyraud (a1) (a2), L. Delaby (a1) (a2) and R. Delagarde (a1) (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed