Skip to main content Accessibility help
×
Home

N-alkanes v. ytterbium/faecal index as two methods for estimating herbage intake of dairy cows fed on diets differing in the herbage : maize silage ratio and feeding level

  • E. Pérez-Ramírez (a1) (a2), J. L. Peyraud (a1) (a2) and R. Delagarde (a1) (a2)

Abstract

The aim of this study was to compare the n-alkanes and the ytterbium (Yb)/faecal index techniques as two methods for estimating the herbage intake of dairy cows fed indoors on different herbage : supplement ratios and feeding levels. The supplement was a mixture of maize silage and soyabean meal (ratio of 87 : 13 on a dry matter (DM) basis). In all, four treatments were studied. The herbage : supplement ratio in the diet was 25 : 75, 50 : 50, 75 : 25 and 50 : 50 for treatments 1, 2, 3 and 4, respectively. Animals were offered for treatments 1, 2 and 3, 100% of ad libitum intake measured before the experiment and 70% of ad libitum intake for treatment 4. Cows were fed herbage in the morning and supplement in the evening. A total of six lactating Holstein dairy cows were used in a 4 × 4 Latin square with four 14-day periods. Herbage and supplement intakes, faecal output (FO), in vivo organic matter (OM) digestibility and faecal recovery of markers were measured on the last 5 days of each period. Intake was estimated with the two methods and from two faecal sampling techniques, that is, total faecal collection v. grab sampling during milking. Mean herbage intake as fed, or estimated from n-alkanes or from the Yb/faecal index was 7.7, 8.1 and 10.2 kg DM, respectively. The mean prediction error, expressed as a fraction of actual herbage intake, was 0.10 and 0.50 for the n-alkanes and Yb/faecal index methods, respectively. The n-alkanes method clearly showed much better accuracy than the Yb/faecal index method for estimating intake, irrespective of the faecal sampling method, herbage : silage proportion or feeding level. For the n-alkanes method, herbage intake was slightly overestimated (7%) when herbage proportion in the diet was high, due to a ratio of faecal C33 : C32 recovery >1. The high bias for the Yb/faecal index was due to the cumulative effect of overestimation of FO (mean recovery of Yb = 0.92) and underestimation of the diet indigestible fraction (−8%). Between-treatment variations of FO were on average well estimated by Yb. Between-treatment variations of OM digestibility estimated using the faecal index technique were lower than those observed in vivo. It is concluded that intake of grazing dairy cows receiving high levels of maize silage supplement should be estimated using the n-alkanes method.

Copyright

References

Hide All
Association Française de Normalisation 1997. Aliments des animaux–Dosage de l'azote–Méthode par combustion (DUMAS)–NF V18–120; Dosage des cendres brutes–NF V18–101. AFNOR Editions, Saint-Denis La Plaine, France.
Aufrère, J, Michalet-Doreau, B 1988. Comparison of methods for predicting digestibility of feeds. Animal Feed Science and Technology 20, 203218.
Bartiaux-Thill, N, François, E 1980. Utilisation de l'oxyde de chrome dans la mesure de la consommation à l'herbage. Bulletin des Recherches Agronomiques de Gembloux 15, 107120.
Bibby, J, Toutenburg, H 1977. Prediction and improved estimation in linear models. John Wiley and Sons, Chichester, UK.
Carruthers, VR, Bryant, AM 1983. Evaluation of the use of chromic oxide to estimate the feed intake of dairy cows. New Zealand Journal of Agricultural Research 26, 183186.
Chenost, M, Grenet, E, Demarquilly, C, Béranger, C 1985. Influence of supplementation on herbage digestibility and on faeces characteristics with sheep. Proceedings of the 15th International Grassland Congress, Kyoto, Japan, pp. 985–986.
Costa, M 1997. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Critical Review of Toxicology 27, 431442.
Decruyenaere, V, Peters, M, Stilmant, D, Lecomte, P, Dardenne, P 2003. Near infrared reflectance spectroscopy applied to faeces to predict dry matter intake of sheep under grazing, comparison with n-alkanes and direct biomass measurement methods. Tropical and Subtropical Agroecosystems 3, 471475.
Delagarde, R, Peyraud, JL, Delaby, L 1999. Influence of carbohydrate or protein supplementation on intake, behaviour and digestion in dairy cows strip-grazing low-nitrogen fertilized perennial ryegrass. Annales de Zootechnie 48, 8196.
Delagarde, R, Pérez-Ramírez, E, Peyraud, JL 2010. Ytterbium oxide has the same accuracy as chromic oxide for estimating variations of faecal dry matter output in dairy cows fed a total mixed ration at two feeding levels. Animal Feed Science and Technology 161, 121131.
Dove, H, Mayes, RW 1996. Plant wax components: a new approach to estimating intake and diet composition in herbivores. Journal of Nutrition 126, 1326.
Dove, H, Freer, M, Foot, JZ 2000. The nutrition of grazing ewes during pregnancy and lactation: a comparison of alkane-based and chromium/in vitro-based estimates of herbage intake. Australian Journal of Agricultural Research 51, 765777.
Dove, H, Mayes, RW, Freer, M, Coombe, JC, Foot, JZ 1989. Faecal recoveries of the alkanes of plant cuticular waxes in penned and in grazing sheep. Proceedings of the 16th International Grassland Congress, Nice, France, pp. 1093–1094.
Elwert, C, Kluth, H, Rodehutscord, M 2004. Effect of variable intake of alfalfa and wheat on faecal alkane recoveries and estimates of roughage intake in sheep. Journal of Agricultural Science 142, 213223.
Ferreira, LMM, Oliván, M, Rodrigues, MAM, Osoro, K, Dove, H, Dias-da-Silva, A 2004. Estimation of feed intake by cattle using controlled-release capsules containing n-alkanes or chromium sesquioxide. Journal of Agricultural Science 142, 225234.
Fries, GF, Marrow, GS, Snow, PA 1982. Soil ingestion by dairy cattle. Journal of Dairy Science 65, 611618.
García, SC, Holmes, CW, Hodgson, J, MacDonald, A 2000. The combination of the n-alkanes and 13C techniques to estimate individual dry matter intakes of herbage and maize silage by grazing dairy cows. Journal of Agricultural Science, Cambridge 135, 4755.
Gordon, IJ 1995. Animal-based techniques for grazing ecology research. Small Ruminant Research 16, 203214.
Institut National de la Recherche Agronomique (INRA) 2007. Alimentation des bovins, ovins et caprins. Besoins de animaux, valeurs des aliments, Tables INRA 2007. Editions QUAE, Versailles, France.
Malossini, F, Bovolenta, S, Piasentier, E, Piras, C, Martillotti, F 1996. Comparison of n-alkanes and chromium oxide methods for estimating herbage intake by grazing dairy cows. Animal Feed Science and Technology 61, 155165.
Mambrini, M, Peyraud, JL 1994. Mean retention time in digestive tract and digestion of fresh perennial ryegrass by lactating dairy cows: influence of grass maturity and comparison with a maize silage diet. Reproduction Nutrition Development 34, 923.
Mayes, RW, Lamb, CS, Colgrove, PM 1986. The use of dosed and herbage n-alkanes as markers for the determination of herbage intake. Journal of Agricultural Science, Cambridge 107, 161170.
Mayes, RW, Lamb, CS, Colgrove, PM 1988. Digestion and metabolism of dosed even-chain and herbage odd-chain n-alkanes in sheep. Proceedings of the 12th General Meeting of the European Grassland Federation, Dublin, 159p.
Mélix, C, Peyraud, JL, Vérité, R 1987. Utilisation de l'oxyde de chrome chez les vaches laitières pour la prévision des quantités de fèces émises. I. Etude des variations du taux de récupération et ses conséquences sur l'estimation de la digestibilité et des quantités ingérées de rations d'herbe et d'ensilage de maïs. Reproduction Nutrition Development 27 (suppl.), 215216.
Minson, DJ, Raymond, WF 1958. Sources of error in the use of faecal index relationships. Experiments in Progress 10, 9296.
Moran, JB, Lemerle, C, Trigg, TE 1987. Excretion patterns of chromium sesquioxide in dairy cows and sheep. Journal of the Australian Institute of Agricultural Science 53, 290292.
Morenz, MJF, da Silva, JFC, Aroeira, LJM, Deresz, F, Vasquez, HM, Paciullo, DSC, Lopes, FCF, Elyas, ACW, Detmann, E 2006. Oxido de cromo e n-alcanos na estimativa do consumo de forragem de vacas em lactação em condições de pastejo. Revista Brasileira de Zootecnia 35, 15351542.
Moshtaghi Nia, SA, Wittenberg, KM 2002. Evaluation of n-alkanes as markers for estimation of dry matter intake and digestibility in steers consuming all-forage or forage-concentrate diets. Canadian Journal of Animal Science 82, 419425.
Ohajuruka, OA, Palmquist, DL 1991. Evaluation of n-alkanes as digesta markers in dairy cows. Journal of Animal Science 69, 17261732.
Oliván, M, Ferreira, LMM, Celaya, R, Osoro, K 2007. Accuracy of the n-alkane technique for intake estimates in beef cattle using different sampling procedures and feeding levels. Livestock Science 106, 2840.
Ørskov, ER, Enoser, C, Mason, VC, Mann, SO 1970. Influence of starch digestion in the large intestine of sheep on caecal fermentation, caecal microflora and faecal nitrogen excretion. Proceedings of the Journal of Nutrition 24, 671672.
Penning, PD 2004. Animal based techniques for estimating herbage intake. In Herbage intake handbook (ed. PD Penning), pp. 5393. British Grassland Society, Reading, UK.
Pérez-Ramírez, E, Delagarde, R, Delaby, L 2008. Herbage intake and behavioural adaptation of grazing dairy cows by restricting time at pasture under two feeding regimes. Animal 2, 13841392.
Peyraud, JL 1997. Techniques for measuring herbage intake of grazing ruminants: a review. In Managing high yielding dairy cows at pasture (ed. E Spörndly, E Burstedt and M Murphy), pp. 323. Swedish University of Agricultural Sciences, Uppsala, Sweden.
Piasentier, E, Bovolenta, S, Malossini, F, Susmel, P 1995. Comparison of n-alkanes or chromium oxide methods for estimation of herbage intake by sheep. Small Ruminant Research 18, 2732.
Prigge, EC, Varga, GA, Vicini, JL, Reid, RL 1981. Comparison of ytterbium chloride and chromium sesquioxide as fecal indicators. Journal of Animal Science 53, 16291633.
Raymond, WF, Minson, DJ 1955. The use of chromic oxide for estimating the faecal production of grazing animals. Journal of the British Grassland Society 10, 282296.
Ribeiro Filho, HMN, Delagarde, R, Peyraud, JL 2005. Herbage intake and milk yield of dairy cows grazing perennial ryegrass swards or white clover/perennial ryegrass swards at low- and medium-herbage allowances. Animal Feed Science and Technology 119, 1327.
Siddons, RC, Paradine, DE, Beever, DE, Cornell, PR 1985. Ytterbium acetate as a particulate digesta flow marker. British Journal of Nutrition 54, 509519.
Statistical Analysis System Institute Inc 1987. SAS User's Guide. SAS Institute Inc, Cary, NC, USA.
Unal, Y, Garnsworthy, PC, Gorton, P 1997. The use of n-alkanes for prediction of intake in dairy cows. Proceedings of the British Society of Animal Science, Penicuik, UK. 137p.
van Soest, PJ, Roberson, JB, Lewis, BA 1991. Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science 75, 22152225.
Valderrabano, J 1979. Techniques of measuring intake by grazing sheep. PhD, Reading University.
Vulich, SA, Hanrahan, JP 1995. Faecal sampling for the estimation of herbage intake using n- alkanes: evaluation of sample pooling and the use of rectal grab samples. Journal of Agricultural Science, Cambridge 124, 7986.
Vulich, SA, O'Riordan, EG, Hanrahan, JP 1991. Effect of litter size on herbage intake at pasture by ewes and their progeny. Animal Production 53, 191197.

Keywords

N-alkanes v. ytterbium/faecal index as two methods for estimating herbage intake of dairy cows fed on diets differing in the herbage : maize silage ratio and feeding level

  • E. Pérez-Ramírez (a1) (a2), J. L. Peyraud (a1) (a2) and R. Delagarde (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed