Skip to main content Accessibility help
×
Home

Modulation of energy and protein supplies in sequential feeding in laying hens

  • M. Traineau (a1) (a2), I. Bouvarel (a3), C. Mulsant (a2), L. Roffidal (a2), C. Launay (a2) and P. Lescoat (a1) (a4)...

Abstract

Sequential feeding (SF) consists of splitting energy (E) and protein/calcium (P) fractions temporally, improving the feed conversion ratio (FCR) of hens compared with a continuous distribution during the day. In a previous study, the E fraction (with a low level of protein) was provided in the morning, whereas the P fraction (with low level of energy) was given in the afternoon. However, there is no clear evidence that a requirement in energy or proteins is connected to these distribution sequences, whereas the requirement for calcium is known to be required in the afternoon. To evaluate the effects on performances of the modulation of energy and protein supplies in SF, five different sequential treatments were offered: E0P0/E0P0; E+P+/E−P−; E+P−/E−P+; E0P+/E0P− and E+P0/E−P0 where E+ represents a high energy level, E0 a moderate one and E− a low one (with the same meaning for P regarding protein supply). Afternoon fractions were provided with particulate calcium. A total of 168 Hendrix hens were housed in individual cages from 20 to 39 weeks of age in two environmentally contrasted rooms. Feed intake in the morning and afternoon fractions, egg production, egg weight, BW and weight of digestive organs were recorded. No diet effect was observed concerning feed intake, egg production and BW. These results suggested that hens are not able to fit their feed intake on energy or protein level of fractions within half-day duration, whereas at the day scale same protein and energy intakes were observed. Moreover, the time of nutrient distribution in feeding did not seem to have an impact on birds’ performances. These studies have also demonstrated that, despite strong environmental pressure, the hens with SF had attenuated performance but continue to produce eggs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modulation of energy and protein supplies in sequential feeding in laying hens
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modulation of energy and protein supplies in sequential feeding in laying hens
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modulation of energy and protein supplies in sequential feeding in laying hens
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited

Corresponding author

References

Hide All
Abrahamsson, P and Tauson, R 1997. Effects of group size on performance, health and birds’ use of facilities in furnished cages for laying hens. Acta Agriculture Scandinavica 47, 254260.
Batonon, DI, Traineau, M, Bouvarel, I, Roffidal, L and Lescoat, P 2014. Capacity of laying hens in sequential feeding to adjust their feed consumption when offered previously a nutritionally unbalanced diet. Archiv fur Geflugelkunde 78, 16121628.
Berg, EP and Marchello, MJ 1994. Bioelectrical-impedance analysis for the prediction of fat-free mass in lambs and lamb carcasses. Journal of Animal Science 72, 322329.
Bouvarel, I, Nys, Y, Panheleux, M and Lescoat, P 2010. How hen’s diet influences eggs quality? INRA Production Animal 23, 167182.
Chah, CC and Moran, ET 1985. Egg characteristics of high-performance hens at the end of lay when given cafeteria access to energy, protein, and calcium. Poultry Science 64, 16961712.
Chauve, C 1998. The poultry red mite Dermanyssus gallinae: current situation and future prospects for control. Veterinary Parasitology 79, 239245.
Cunningham, DL, Tienhoven, AV and Gvaryahu, G 1988. Population size, cage area, and dominance rank effects on productivity and well-being of laying hens. Poultry science 63, 399406.
Grobas, S, Mendez, J, De Blas, C and Mateos, GG 1999. Laying hen productivity as affected by energy, supplemental fat, and linoleic acid concentration of the diet. Poultry Science 78, 15421551.
Gunawardana, P, Roland, DA and Bryant, MM 2009. Effect of dietary energy, protein, and a versatile enzyme on hen performance, egg solids, egg composition, and egg quality of Hy-Line W-36 hens during second cycle, phase two. Journal of Applied Poultry Research 18, 4353.
Keshavarz, K 1998. Investigation on the possibility of reducing protein, phosphorus, and calcium requirements of laying hens by manipulation of time of access to these nutrients. Poultry Science 77, 13201332.
Lesna, I, Wolfs, P, Faraji, F, Roy, L, Komdeur, J and Sabelis, MW 2009. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae. Experimental and Applied Acarology 48, 6380.
Mongin, P and Sauveur, B 1974. Voluntary food and calcium intake by the laying hen. British Poultry Science 15, 349359.
Nahashon, SN, Adefope, N, Amenyenu, A and Wright, D 2005. Effect of dietary metabolisable energy and crude protein concentrations on growth performance and carcass characteristics of French guinea fowl broilers. Poultry Science Journal 84, 337344.
Nir, I, Melcion, JP and Picard, M 1990. Effect of particle-size of sorghum grains on feed-intake and performance of young broilers. Poultry Science 69, 21772184.
Penz, AM and Jensen, LS 1991. Influence of protein-concentration, amino-acid supplementation, and daily time of access to high-protein or low-protein diets on egg weight and components in laying hens. Poultry Science 70, 24602466.
Perez-Bonilla, A, Novoa, S, Garcia, J, Mohiti-Asli, M, Frikha, M and Mateos, GG 2012. Effects of energy concentration of the diet on productive performance and egg quality of brown egg-laying hens differing in initial body weight. Poultry Science 91, 31563166.
Plavnik, I, Wax, E, Sklan, D, Bartov, I and Hurwitz, S 1997. The response of broiler chickens and turkey poults to dietary energy supplied either by fat or carbohydrates. British Poultry Science 76, 10001005.
Rutter, K, Hennoste, L, Ward, LC, Cornish, BH and Thomas, BJ 1998. Bioelectrical impedance analysis for the estimation of body composition in rats. Laboratory Animals 32, 6571.
Safaa, HM, Jimenez-Moreno, E, Valencia, DG, Frikha, M, Serrano, MP and Mateos, GG 2009. Effect of main cereal of the diet and particle size of the cereal on productive performance and egg quality of brown egg-laying hens in early phase of production. Poultry Science 88, 608614.
Sauvant, D, Perez, J-M and Tran, G 2004. Tables of composition and nutritional value of feed materials. INRA Editions and AFZ. Wageningen Academic Publishers, Paris, France.
Short, FJ, Gorton, P, Wiseman, J and Boorman, KN 1996. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Animal Feed Science and Technology 59, 215221.
Summers, JD and Lesson, S 1985. Commercial poultry nutrition, 3rd edition. Nottingham University Press Editions, University of Guelph, Ontarion, Canada.
Traineau, M, Bouvarel, I, Mulsant, C, Roffidal, L, Launay, C and Lescoat, P 2013. Effects on performance of ground wheat with or without insoluble fiber or whole wheat in sequential feeding for laying hens. Poultry Science 92, 24752486.
Umar Faruk, M, Bouvarel, I, Meme, N, Rideau, N, Roffidal, L, Tukur, HM, Bastianelli, D, Nys, Y and Lescoat, P 2010. Sequential feeding using whole wheat and a separate protein-mineral concentrate improved feed efficiency in laying hens. Poultry Science 89, 785796.
Umar Faruk, M, Bouvarel, I, Mallet, S, Ali, MN, Tukur, HM, Nys, Y and Lescoat, P 2011. Is sequential feeding of whole wheat more efficient than ground wheat in laying hens? Animal 5, 230238.
Valkonen, E, Venalainen, E, Rossow, L and Valaja, J 2008. Effects of dietary energy content on the performance of laying hens in furnished and conventional cages. Poultry Science 87, 844852.

Keywords

Modulation of energy and protein supplies in sequential feeding in laying hens

  • M. Traineau (a1) (a2), I. Bouvarel (a3), C. Mulsant (a2), L. Roffidal (a2), C. Launay (a2) and P. Lescoat (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed