Skip to main content Accessibility help

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach 1

  • J. Guyader (a1) (a2), M. Eugène (a1) (a2), P. Nozière (a1) (a2), D. P. Morgavi (a1) (a2), M. Doreau (a1) (a2) and C. Martin (a1) (a2)...


A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance−covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=−30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.


Corresponding author


Hide All

This paper is based on a presentation at the Greenhouse Gases and Animal Agriculture Conference held in Dublin, June 2013.



Hide All
Brossard, L, Martin, C, Chaucheyras-Durand, F and Michalet-Doreau, B 2004. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reproduction Nutrition Development 44, 195206.
Calsamiglia, S, Busquet, M, Cardozo, PW, Castillejos, L and Ferret, A 2007. Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science 90, 25802595.
Czerkawski, JW 1986. An introduction to rumen studies. Pergamon Press, Oxfordshire and New York, NY, USA.
Doreau, M and Ferlay, A 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science 43, 97110.
Finlay, BJ, Esteban, G, Clarke, KJ, Williams, AG, Embley, TM and Hirt, RP 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters 117, 157161.
Goel, G, Puniya, A, Aguilar, C and Singh, K 2005. Interaction of gut microflora with tannins in feeds. Die Naturwissenschaften 92, 497503.
Hegarty, RS 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agricultural Research 50, 13211327.
Hook, SE, Wright, ADG and McBride, BW 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 111.
Jeyanathan, J, Martin, C and Morgavi, DP 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8, 250261.
Jordan, E, Lovett, DK, Monahan, FJ, Callan, J, Flynn, B and O’Mara, FP 2006. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. Journal of Animal Science 84, 162170.
Lettat, A 2012. Efficacité et mode d'action des bactéries propioniques et/ou lactiques pour prévenir l'acidose latente chez le ruminant. PhD thesis, Blaise Pascal University, Clermont Ferrand, France.
Loncke, C, Ortigues-Marty, I, Vernet, J, Lapierre, H, Sauvant, D and Nozière, P 2009. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (b-hydroxybutyrate, lactate) from dietary characteristics in ruminants: a meta-analysis approach. Journal of Animal Science 87, 253268.
Morgavi, DP, Jouany, JP and Martin, C 2008. Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Australian Journal of Experimental Agriculture 48, 6972.
Morgavi, DP, Forano, E, Martin, C and Newbold, CJ 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4, 10241036.
Morgavi, DP, Martin, C, Jouany, JP and Ranilla, MJ 2012. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. The British Journal of Nutrition 107, 388397.
Newbold, CJ, Lassalas, B and Jouany, JP 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letters in Applied Microbiology 21, 230234.
Popova, M, Morgavi, DP, Doreau, M and Martin, C 2011. Production de méthane et interactions microbiennes dans le rumen. INRA Productions Animales 24, 447460.
Sauvant, D, Perez, J and Tran, G 2004. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage. INRA Editions, Paris, France.
Sauvant, D, Schmidely, P, Daudin, JJ and St-Pierre, NR 2008. Meta-analyses of experimental data in animal nutrition. Animal 2, 12031214.
Sauvant, D, Giger-Reverdin, S, Serment, A and Broudiscou, L 2011. Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants. INRA Productions Animales 24, 433446.
Stewart, CS, Flint, HJ and Bryant, MP 1997. The rumen bacteria. In The rumen microbial ecosystem (ed. PN Hobson and CS Stewart), pp. 1072. Blackie Academic & Professional, London, UK.
Ungerfeld, EM and Kohn, RA 2006. The role of thermodynamics in the control of ruminal fermentation. In Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T Hvelplund and MO Nielsen), pp. 5585. Wageningen Academic Publishers, Wageningen, The Netherlands.
Ungerfeld, EM, Kohn, RA, Wallace, RJ and Newbold, CJ 2007. A meta-analysis of fumarate effects on methane production in ruminal batch cultures. Journal of Animal Science 85, 25562563.
Williams, AG and Coleman, GS 1992. The rumen protozoa. Springer-Verlag, New York, NY, USA.


Type Description Title
Supplementary materials

Supplementary material
Guyader Supplementary material S1

 Word (22 KB)
22 KB

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach 1

  • J. Guyader (a1) (a2), M. Eugène (a1) (a2), P. Nozière (a1) (a2), D. P. Morgavi (a1) (a2), M. Doreau (a1) (a2) and C. Martin (a1) (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed