Skip to main content Accessibility help
×
Home

Influence of dietary fibre level and pelleting on the digestibility of energy and nutrients in growing pigs and adult sows

  • M. Le Gall (a1), M. Warpechowski (a2), Y. Jaguelin-Peyraud (a1) and J. Noblet (a1)

Abstract

Two experiments were carried out to investigate the effect of pelleting on the apparent total tract digestibility (ATTD) of energy and nutrients according to the dietary fibre (DF) level in growing pigs (experiment 1) and in adult sows (experiment 2). Four diets based on wheat, barley, maize and soybean meal and supplemented with increased contents of a mixture of wheat bran, maize bran, soybean hulls and sugar beet pulp (116, 192, 268 and 344 g NDF/kg dry matter (DM) in diets 1 to 4) were tested. In experiment 1, 32 growing pigs (62 kg average BW), in two replicates and according to a factorial design, were fed one of the four diets, either as mash or as pellets. The digestibility of energy, organic matter (OM) and all nutrients decreased with DF increasing for both feed forms; the reduction was about 1% for each 1% NDF increase in the diet (P < 0.001). Pelleting improved moderately the digestibility of energy and OM (+1.5% and +1.0%, respectively; P < 0.05) in connection with greater DF (+5%; P < 0.05) and fat digestibility (+25%). Thus, pelleting improved the digestible energy content of diets on average by 0.3 MJ/kg of feed DM (P < 0.01). In experiment 2, four adult dry sows (235 kg average BW) were used in a 4 × 4 Latin square design and fed the four diets used in experiment 1 as pellets. The digestibility of energy, OM and macronutrients also decreased with DF increase (P < 0.001; −0.4% per 1% increase of dietary NDF for energy) while the digestibility of DF (i.e. crude fibre (CF) or ADF) increased (P < 0.001) or remained at a high level. In conclusion, increasing DF in diets decreases the digestibility of nutrients and energy in pigs and in sows. Although positive, the pelleting impact is minor on the energy and nutrients digestibility of fibre-rich diets in growing pigs, even in high-DF diets.

Copyright

Corresponding author

References

Hide All
Association of Official Analytical Chemists 1990. Official methods of analysis, 15th edition, p. 777. AOAC, Washington, DC.
Bach Knudsen, KE 2001. The nutritional significance of “dietary fibre” analysis. Animal Feed Science and Technology 90, 320.
Bach Knudsen, KE, Hansen, JA 1991. Gastrointestinal implications in pigs of wheat and oat fractions I. Digestibility and bulking properties of polysaccharides and other major constituents. The British Journal of Nutrition 65, 217232.
Bach Knudsen, KE, Jensen, BB, Hansen, I 1993. Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in beta-d-glucan. The British Journal of Nutrition 70, 537556.
Bengala-Freire, J, Aumaitre, A, Peiniau, J 1991. Effects of feeding raw and extruded peas on ileal digestibility, pancreatic enzymes and plasma glucose and insulin in early weaned pigs. Journal of Animal Physiology and Animal Nutrition 65, 154164.
Benhke, KC 1996. Feed manufacturing technology: current issues and challenges. Animal Feed Science and Technology 62, 4957.
Björck, I, Nyman, M, Asp, NG 1984. Extrusion cooking and dietary fibre: effects on dietary fibre content and on degradation in the rat intestinal tract. Cereal Chemistry 61, 174179.
Canibe, N 1997. Apparent digestibility of non-starch polysaccharides and short chain fatty acid production in the large intestine of pigs fed dried or toasted peas. Acta Agricultura Scandinavica, Section A-Animal Science 47, 106116.
Chabeauti, E, Noblet, J, Carré, B 1991. Digestion of plant cell walls from four different sources in growing pigs. Animal Feed Science and Technology 32, 207213.
Cummings, JH, Englyst, HN 1995. Gastrointestinal effects of food carbohydrate. The American Journal of Clinical Nutrition 61, 938S945S.
Ellis, PR, Roberts, FG, Low, AG, Morgan, LM 1995. The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta. The British Journal of Nutrition 74, 539556.
European Economic Community 1972. Analytical determination of starch. Official Journal of European Communities L123/7 (EEC, Brussels).
Glitsø, LV, Brunsgaard, G, Højsgaard, S, Sandström, B, Bach Knudsen, KE 1998. Intestinal degradation in pigs of rye dietary fibre with different structural characteristics. The British Journal of Nutrition 80, 457468.
Graham, H, Hesselman, K, Aman, P 1986. The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. The Journal of Nutrition 116, 242251.
Keogh, MK, O’Kennedy, BT 1999. Milk fat microencapsulation using whey proteins. International Dairy Journal 9, 657663.
Lahaye, L, Ganier, P, Thibault, JN, Sève, B 2004. Technological processes of feed manufacturing affect protein endogenous losses and amino acid availability for body protein deposition in pigs. Animal Feed Science and Technology 113, 141156.
Larsen, FM, Moughan, PJ, Wilson, MN 1993. Dietary fibre viscosity and endogenous protein excretion at the terminal ileum of growing rats. The Journal of Nutrition 123, 18981904.
Le Goff, G, Noblet, J 2001. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. Journal of Animal Science 79, 24182427.
Le Goff, G, Le Groumellec, L, van Milgen, J, Dubois, S, Noblet, J 2002a. Digestibility and metabolic utilisation of dietary energy in adult sows: influence of addition and origin of dietary fibre. The British Journal of Nutrition 87, 325335.
Le Goff, G, van Milgen, J, Noblet, J 2002b. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows. Animal Science 74, 503515.
Len, NT, Lindberg, JE, Ogle, B 2007. Digestibility and nitrogen retention of diets containing different levels of fibre in local (Mong Cai), F1 (Mong Cai × Yorkshire) and exotic (Landrace × Yorkshire) growing pigs in Vietnam. Journal of Animal Physiology and Animal Nutrition 91, 297303.
Leterme, P, van Leeuwen, P, Thewis, A, Huisman, J 1996. Chemical composition of pea inner fibre isolates and their effect on the endogenous digestive secretions in pigs. Journal of Science and Food Agricultural 72, 127134.
Montagne, L, Pluske, JR, Hampson, DJ 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology 108, 95117.
Morales, J, Perez, JF, Martin-Orue, SM, Fondevila, M, Gasa, J 2002. Large bowel fermentation of maize or sorghum-acorn diets fed as a different source of carbohydrates to Landrace and Iberian pigs. The British Journal of Nutrition 88, 489497.
Noblet, J 2005. Recent advances in energy evaluation of feeds for pigs. In Recent advances in animal nutrition 2005 (ed. PC Garnsworthy and J Wiseman), pp. 126. Nottingham University Press, Nottingham.
Noblet, J, Bach Knudsen, KE 1997. Comparative digestibility of wheat, maize and sugar beet pulp non-starch polysaccharides in adult sows and growing pigs. In Digestive physiology in pigs (ed. JP Laplace, C Fevrier and A Barbeau), pp. 571574. European Association for Animal Production, Saint-Malo, France.
Noblet, J, Champion, M 2003. Effect of pelleting and body weight on digestibility of energy and fat of two corns in pigs. Journal of Animal Science 81, 140.
Noblet, J, Le Goff, G 2001. Effect of dietary fibre on the energy value of feeds for pigs. Animal Feed Science and Technology 90, 3552.
Noblet, J, Perez, JM 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. Journal of Animal Science 71, 33893398.
Noblet, J, Shi, XS 1993. Comparative digestibility of energy and nutrients in growing pigs fed ad libitum and adult sows fed at maintenance. Livestock Production Science 34, 137152.
Noblet, J, Shi, XS 1994. Effect of body weight on digestive utilization of energy and nutrients of ingredients and diets in pigs. Livestock Production Science 37, 323338.
Noblet, J, Fortune, H, Dubois, Sand Henry, Y 1989. Nouvelles bases d’estimation des teneurs en énergie digestible, métabolisable et nette des aliments pour le porc (New approaches for estimation digestible, metabolisable and net energy values in pig feeds), 106pp. INRA, Paris, France.
Noblet, J, Jaguelin-Peyraud, Y, Quemeneur, BChesneau, G 2008. Valeur énergétique de la graine de lin chez le porc: impact de la technologie de cuisson-extrusion. Journées de la Recherche porcine 40, 203208.
Prosky, L, Schweizer, TF, Devries, JW, Furda, I 1988. Determination of insoluble, soluble, and total dietary fibre in foods and food products, interlaboratory study. Journal of the Association of Official Analytical Chemists 71, 10171023.
Quiniou, N, Dourmad, JY, Noblet, J 1996. Effect of energy intake on the performance of different types of pig from 45 to 100 kg body weight. 1. Protein and lipid deposition. Animal Science 63, 289296.
Saunders, RM, Walker, HG, Kohler, GO 1969. Aleurone cells and the digestibility of wheat mill feeds. Poultry Science 48, 14971503.
Sauvant, D, Perez, JMand Tran, G 2004. Tables of composition and nutritional values of feed Materials: pig, poultry, sheep, goats, rabbits, horses, fish. Wageningen Academic Publishers, Wageningen, Netherlands; INRA Editions, Paris, France.
Skiba, F, Noblet, J, Callu, P, Evrard, J, Melcion, JP 2002. Influence du type de broyage et de la granulation sur la valeur énergétique de la graine de colza chez le porc en croissance. Journées de la Recherche Porcine 34, 6773.
Stein, HH, Bohlke, RA 2007. The effects of thermal treatment of field peas (Pisum sativum L.) on nutrient and energy digestibility by growing pigs. Journal of Animal Science 85, 14241431.
Van Soest, PJ, Wine, RH 1967. Use detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists 50, 5055.
Vande Ginste, J, De Schrijver, R 1998. Expansion and pelleting of starter, grower and finisher diets for pigs: effects on nitrogen retention, ileal and total tract digestibility of protein, phosphorus and calcium and in vitro protein quality. Animal Feed Science and Technology 72, 303314.
Wenk, C 2001. The role of dietary fibre in the digestive physiology of the pig. Animal Feed Science and Technology 90, 2133.
Wilfart, A, Montagne, L, Simmins, H, Noblet, J, van Milgen, J 2007. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. The British Journal of Nutrition 98, 5462.
Wondra, KJ, Hancock, JD, Behnke, KC, Hines, RH, Stark, CR 1995. Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs. Journal of Animal Science 73, 757763.
Xing, JJ, Heugten, E, Li, DF, Touchette, KJ, Coalson, JA, Odgaard, RL, Odle, J 2004. Effects of emulsification, fat encapsulation, and pelleting on weanling pig performance and nutrient digestibility. Journal of Animal Science 82, 26012609.
Yin, YL, McEvoy, JDG, Schulze, H, Hennig, U, Souffrant, WB 2000. Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or its by-products without or with xylanase supplementation. Livestock Production Science 62, 119132.
Zebrowska, H, Low, AG 1987. The influence of diets based on whole wheat, wheat flour and wheat bran on exocrine pancreatic secretion in pigs. The Journal of Nutrition 117, 12121216.

Keywords

Related content

Powered by UNSILO

Influence of dietary fibre level and pelleting on the digestibility of energy and nutrients in growing pigs and adult sows

  • M. Le Gall (a1), M. Warpechowski (a2), Y. Jaguelin-Peyraud (a1) and J. Noblet (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.