Skip to main content Accessibility help
×
Home

Increasing sodium bicarbonate level in high-concentrate diets for heifers. II. Effects on chewing and feeding behaviors

  • L. A. González (a1) (a2), A. Ferret (a1) (a2), X. Manteca (a1) (a2) and S. Calsamiglia (a1) (a2)

Abstract

Four Holstein heifers (264 ± 12 kg initial BW) were used in a 4 × 4 Latin square design with 21-day experimental periods to determine the effect of increasing levels of sodium bicarbonate (BICARB) (0%, 1.25%, 2.5% and 5%, of concentrate dry matter (DM) basis) on chewing and feed intake behavior when fed high-concentrate diets. Concentrate (13.41% CP, 13.35% NDF) and barley straw were fed once a day at 0830 h ad libitum. Feed bunks placed on scales and video recording were used to measure 24-h feed intake and chewing behavior, respectively. The patterns of feeding behavior (feed intake, meal size and length) and chewing behavior (eating, ruminating and total chewing) were studied by dividing the day into 12 intervals of 2-h each, beginning at feeding (interval 1 through 12). Number of meals per day and eating rate decreased linearly with increasing buffer level, but meal length increased linearly. No treatment effects were observed in sum of daily meal lengths or average meal size. The treatment × interval interaction was significant on meal size, length and feed intake. The size and length of those meals occurring during the 4 h post-feeding increased linearly. However, meal size tended to decrease in the evening between 8 and 12 h, whereas feed intake decreased linearly from 6 to 10 h and from 12 to 14 h post-feeding. Buffer concentration did not affect the percentage of time spent ruminating, eating or drinking per day but the buffer level × interval interaction was significant. Time spent eating expressed as min per kg of DM or organic matter (OM) intake increased linearly with buffer levels. Proportion of time spent eating increased linearly during the intervals between 0 and 4 h post-feeding. Time spent ruminating decreased linearly during the 2 h post-feeding, and also in the evening from 12 to 14 h, and at night from 18 to 22 h post-feeding, but the effect was quadratic between 8 and 10 h when intermediate buffer levels showed the greatest ruminating time. Time spent drinking decreased linearly from 6 to 8 h but increased during the 2 h following feeding and from 10 to 12 h post-feeding. Daily eating rate and meal frequency decreased linearly as the buffer level increased, but average meal size and daily chewing times were not affected. However, significant time of the day × buffer level interactions were observed for feed intake, meal size and length and chewing behavior.

Copyright

Corresponding author

References

Hide All
Allen, MS 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science 80, 14471462.
Allen, MS, Bradford, BJ, Harvatine, KJ 2005. The cow as a model to study food intake regulation. Annual Review of Nutrition 25, 523547.
Bailey, CB, Balch, CC 1961. Saliva secretion and its relation to feeding in cattle. 1. The composition and rate of secretion of parotid saliva in a small steer. British Journal of Nutrition 15, 371382.
Bennink, MR, Tyler, TR, Ward, GM, Johnson, DE 1978. Ionic milieu of bovine and ovine rumen as affected by diet. Journal of Dairy Science 61, 315323.
Campbell, CP, Marshall, SA, Mandell, IB, Wilton, JW 1992. Effects of source of dietary neutral detergent fiber on chewing behaviour in beef cattle fed pelleted concentrates with or without supplemental roughage. Journal of Animal Science 70, 894903.
Carter, RR, Grovum, WL 1990. A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. Journal of Animal Science 68, 28112832.
Chase, LE, Rakes, AH, Linnerud, AC, Pettyjohn, JD 1971. Diurnal variations in blood and rumen metabolites and feeding activity of dairy steers under controlled lighting. Journal of Dairy Science 54, 18351839.
Chase, LE, Wangsness, PJ, Baumgardt, BR 1976. Feeding behavior of steers fed a complete mixed ration. Journal of Dairy Science 59, 19231928.
Cooper, RJ, Klopfenstein, TJ, Stock, RA, Milton, CT, Herold, DW, Parrott, JC 1999. Effects of imposed feed intake variation on acidosis and performance of finishing steers. Journal of Animal Science 77, 10931099.
Deswysen, AG, Ellis, WC, Pond, KR, Jenkins, WL, Connelly, J 1987. Interrelationships among voluntary intake, eating and ruminating behavior and ruminal motility of heifers fed corn silage. Journal of Animal Science 64, 835841.
Erdman, RA 1988. Dietary buffering requirements of the lactating dairy cow: a Review. Journal of Dairy Science 71, 32463266.
Erickson, GE, Milton, CT, Fanning, KC, Cooper, RJ, Swingle, RS, Parrott, JC, Vogel, G, Klopfenstein, TJ 2003. Interaction between bunk management and monensin concentration on finishing performance, feeding behavior, and ruminal metabolism during an acidosis challenge with feedlot cattle. Journal of Animal Science 81, 28692879.
Forbes, JM 1980. A model of the short-term control of feeding in the ruminant: effect of changing animal or feed characteristics. Appetite 1, 2141.
Fulton, WR, Klopfenstein, TJ, Britton, RA 1979. Adaptation to high concentrate diets by beef cattle. I. Adaptation to corn and wheat diets. Journal of Animal Science 49, 775784.
González LA, Ferret A, Manteca X and Calsamiglia S 2008. Increasing the sodium bicarbonate level in high-concentrate diets for heifers. I. Effects on intake, water consumption and ruminal fermentation. Animal 2, 705–712.
Keunen, JE, Plaizier, JC, Kyriazakis, I, Duffield, TF, Widowski, TM, Lindinger, MI, McBride, BW 2003. Short communication: Effects of subacute ruminal acidosis on free-choice intake of sodium bicarbonate in lactating dairy cows. Journal of Dairy Science 86, 954957.
Kohn, RA, Dunlap, TF 1998. Calculation of the buffering capacity of bicarbonate in the rumen and in vitro. Journal of Animal Science 76, 17021709.
Krause, M, Beauchemin, KA, Rode, LM, Farr, BI, Nørgaard, P 1998. Fibrolytic enzyme treatment of barley grain and source of forage in high-grain diets fed to growing cattle. Journal of Animal Science 76, 29122920.
Langhans W, Rossi R and Scharrer E 1995. Relationships between feed and water intake in ruminants. In Ruminant physiology, digestion, metabolism, growth and reproduction. Proceedings of the eighth International Symposium on Ruminant Physiology (ed. WV Englehardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 199–216. Stuttgart, Germany.
Marshall, SA, Campbell, CP, Mandell, IB, Wilton, JW 1992. Effects of source and level of dietary neutral detergent fiber on feed intake, ruminal fermentation, ruminal digestion in situ, and total tract digestion in beef cattle fed pelleted concentrates with or without supplemental roughage. Journal of Animal Science 70, 884893.
Mitlöhner, FM, Morrow-Tesch, JL, Wilson, WC, Dailey, JW, McGlone, JJ 2001. Behavioral sampling techniques for feedlot cattle. Journal of Animal Science 79, 11891193.
Nielsen, BL 1999. On the interpretation of feeding behaviour measures and the use of feeding rate as an indicator of social constraint. Applied Animal Behavior Science 63, 7991.
Owens, FN, Secrist, DS, Hill, WJ, Gill, DR 1998. Acidosis in Cattle: a Review. Journal of Animal Science 76, 275286.
Putnam, PA, Davis, RE 1963. Ration effects on drylot steer feeding patterns. Journal of Animal Science 22, 437443.
R Development Core Team 2004. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.
Rogers, JA, Davis, CL 1982. Rumen volatile fatty acid production and nutrient utilization in steers fed a diet supplemented with sodium bicarbonate and monensin. Journal of Dairy Science 65, 944952.
Rossi, R, Del Prete, E, Rokitzky, J, Scharrer, E 1998. Effects of a high NaCl diet on eating and drinking patterns in pygmy goats. Physiology and Behavior 63, 601604.
Rotger, A, Ferret, A, Manteca, X, Ruiz-de-la-Torre, JL, Calsamiglia, S 2006. Effects of dietary nonstructural carbohydrates and protein sources on feeding behavior of tethered heifers fed high-concentrate diets. Journal of Animal Science 84, 11971204.
Schwartzkopf-Genswein, KS, Beauchemin, KA, Gibb, DJ, Crews, DH Jr, Kickman, DD, Streeter, M, McAllister, TA 2003. Effect of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: a review. Journal of Animal Science 81 (suppl. E), E149E158. Available at: http: //jas.fass.org/cgi/content/full/81/14_suppl_2/. Accessed Aug. 10, 2005.
Shain, DH, Stock, RA, Klopfenstein, TJ, Herold, DW 1999. The effect of forage source and particle size on finishing yearling steer performance and ruminal metabolism. Journal of Animal Science 77, 10821092.
Sudweeks, EM, McCollough, ME, Sisk, LR, Law, SE 1975. Effects of concentrate type and level and forage type on chewing time of steers. Journal of Animal Science 41, 219224.
Sudweeks, EM, Ely, LO, Sisk, LR 1980. Technical note: effect of intake on chewing activity of steers. Journal of Dairy Science 63, 152154.
Tanida, H, Swanson, LV, Hohenboken, WD 1984. Effect of artificial photoperiod on eating behavior and other behavioral observations of dairy cows. Journal of Dairy Science 67, 585591.
Tolkamp, BJ, Kyriazakis, I 1999. A comparison of five methods that estimate meal criteria for cattle. Animal Science 69, 501514.
Welch, JG 1982. Rumination, particle size and passage from the rumen. Journal of Animal Science 54, 885894.
Yeates, MP, Tolkamp, BJ, Allcroft, DJ, Kyriazakis, I 2001. The use of mixed distribution models to determine bout criteria for analysis of animal behaviour. Journal of Theoretical Biology 213, 413425.

Keywords

Related content

Powered by UNSILO

Increasing sodium bicarbonate level in high-concentrate diets for heifers. II. Effects on chewing and feeding behaviors

  • L. A. González (a1) (a2), A. Ferret (a1) (a2), X. Manteca (a1) (a2) and S. Calsamiglia (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.