Skip to main content Accessibility help
×
Home

Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion

  • P. R. Beatson (a1), S. Meier (a2), N. G. Cullen (a3) and H. Eding (a4)
  • Please note a correction has been issued for this article.

Abstract

Nitrogen (N) leached into groundwater from urine patches of cattle grazing in situ is an environmental problem in pasture-based dairy industries. One potential mitigation is to breed cattle for lower urinary nitrogen (UN) excretion. Urinary nitrogen is difficult to measure, while milk urea nitrogen concentration (MUN) is relatively easy to measure. For animals fed diets of differing N content in confinement, MUN is moderately heritable and is positively related to UN. However, there is little information on the heritability of MUN, and its relationship with other traits such as milk yield and composition, for animals grazing fresh pasture. Milk urea nitrogen concentration data together with milk yield, fat, protein and lactose composition and somatic cell count was collected from 133 624 Holstein-Friesian (HF), Jersey (J) and HF×J (XBd) cows fed predominantly pasture over three full lactations and one part lactation. Mean MUN was 14.0; and 14.4, 13.2 and 13.9 mg/dl for HF, J and XBd cows, respectively. Estimates of heritability of MUN were 0.22 using a repeatability model that fitted year-of-lactation by month-of-lactation by cow-age with days-in-milk within month-of-lactation and cow-age, and 0.28 using a test-day model analysis with Gibbs sampling methods. Sire breeding values (BVs) ranged from −2.8 to +3.2 indicating that MUN could be changed by selection. The genetic correlation between MUN and percent true protein in milk was −0.22; −0.29 for J cows and −0.16 for HF cows. Should the relationship between MUN and UN observed in dietary manipulation studies hold similarly when MUN is manipulated by genetic selection, UN excretion could be reduced by 6.6 kg/cow per year in one generation of selection using sires with low MUN BVs. Although J cows had lower MUN than HF, total herd UN excretion may be similar for the same fixed feed supply because more J cows are required to utilise the available feed. The close relationship between blood plasma urea N concentration and MUN may enable early selection of bulls to breed progeny that excrete less UN.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Bastin, C, Laloux, L, Gillon, A, Miglior, F, Soyeurt, H, Hammami, B, Bertozzi, C and Gengler, N 2009. Modelling milk urea of Walloon dairy cows in management perspectives. Journal of Dairy Science 92, 35293540.
Beukes, PC, Romera, AJ, Gregorini, P, Macdonald, KA, Glassey, CB and Shepherd, MA 2017. The performance of an efficient dairy system using a combination of nitrogen leaching mitigation strategies in a variable climate. Science of the Total Environment 599-600, 17911801.
Burgos, SA, Fadel, JG and De Peters, EJ 2007. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: relation of milk urea nitrogen to urine urea nitrogen excretion. Journal of Dairy Science 90, 54995508.
Cantalapiedra-Hijar, G, Dewhurst, R, Cheng, L, Cabrita, ARJ, Fonseca, A, Fouillet, H, Noziere, P and Ortigues-Marty, I 2016. Isotopic N fractionation as a biomarker of nitrogen use efficiency in ruminants: a metanalysis. In Energy and protein metabolism and nutrition (ed. J Skomial and H Lapierre), pp. 1087. Wageningen Academic Publishers, Wageningen, The Netherlands.
Ciszuk, AU and Gebregziabher, T 1994. Milk urea as an estimate of urine nitrogen of dairy cows and goats. Acta Agriculturae Scandinavica 44, 8795.
DairyNZ, 2017. Feed values. Retrieved on 1 December 2017 from https://www.DairyNZ.co.nz/feed/supplements/feed%20values.
De Roos, APW, Harbers, AGF and De Jong, G 2002. Herd specific random regression curves in a test-day model for protein yield in dairy cattle. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, 19–23 August 2002, Montpellier, France, Communication No. 01.05.
De Roos, APW, Harbers, AGF and De Jong, G 2004. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in The Netherlands. Journal of Dairy Science 87, 26932701.
De Roos, APW, Pool, MH, Caccamo, M, Azzaro, G, Ferguson, JD and Licitra, G 2005. Variance components of test-day milk, fat, and protein production, and somatic cell score from all parities of dairy cows in South-eastern Sicily estimated with a random regression model. Journal of Dairy Science 88 (suppl. 1), 202.
Garcia-Muniz, JG, Lopez-Villalobos, N, Burke, JL, Sandbrok, T and Vazquez-Pelaez, CG 2013. Spatial-time correlation between milk urea with milk components and somatic cell score of bulk milk samples from farms supplying milk for cheese and milk powder manufacturing. Proceedings of the New Zealand Society of Animal Production 73, 108113.
Gilmour, AR, Gogel, BJ, Cullis, BR and Thompson, R 2009. ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK.
Gluckman, PD 2017. New Zealand’s fresh waters: values, state, trends and human impacts. Report from office of the Prime Minister’s Chief Science Advisor. Retrieved on 20 June 2018 from http://www.pmcsa.org.nz/wp-content/uploads/PMCSA-Freshwater-Report.pdf.
Gustin, G 2017. Agriculture begins to tackle its role in climate change. Retrieved on 1 December 2017 from https://insideclimatenews.org/news/03012017/agriculture-climate-change-paris-agreement-global-warming-drought.
Haynes, RJ and Williams, PH 1993. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy 46, 119199.
Hendriks, S 2016. The effect of dietary nitrogen on nitrogen partitioning and milk production in grazing dairy cows. M Animal Science thesis, Massey University, Palmerston North, New Zealand.
Jonker, JS, Kohn, RA and Erdman, RA 1998. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. Journal of Dairy Science 81, 26812692.
Kauffman, AJ and St-Pierre, NR 2001. The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows. Journal of Dairy Science 84, 22842294.
Kirkpatrick, M, Lofsvold, D and Bulmer, M 1990. Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 124, 979993.
Kohn, RA, Kalscheur, KF and Russek-Cohen, E 2002. Evaluation of models to estimate urinary nitrogen and expected milk urea nitrogen. Journal of Dairy Science 85, 227233.
König, S, Chang, YM, von Borstel, UU, Gianola, D and Simianer, H 2008. Genetic and phenotypic relationships among milk urea nitrogen, fertility, and milk yield in Holstein cows. Journal of Dairy Science 91, 43724382.
Lidauer, M, Mantysaari, EA, Stranden, I and Poso, J 2000. Multiple-trait random regression model for all lactations. Interbull Bulletin 25, 8186.
Luo, J and Kelliher, F 2010. Partitioning of animal excreta N into urine and dung and developing the N2O inventory. Report for Ministry for Primary Industries, New Zealand. Ministry for Primary Industries technical paper No. 2014/05. Retrieved on 18 June 2018 from http://www.mpi.govt.nz/news-resources.publications.aspx.
Miglior, F, Sewalem, A, Jamrozik, J, Bohmanova, J, Lefebvre, DM and Moore, RK 2007. Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. Journal of Dairy Science 90, 24682479.
Mitchell, RG, Rogers, GW, Dechow, CD, Vallimont, JE, Cooper, JB, Sander-Nielsen, U and Clay, JS 2005. Milk urea nitrogen concentration: heritability and genetic correlations with reproductive performance and disease. Journal of Dairy Science 88, 44344440.
Mucha, S and Strandberg, E 2011. Genetic analysis of milk urea nitrogen and relationships with yield and fertility across lactation. Journal of Dairy Science 94, 56655672.
New Zealand Animal Evaluation (NZAE) Limited 2017. All about BW. Retrieved on 7 August 2017 from https://www.dairynz.co.nz/animal/animal-evaluation/interpreting-the-info/.
New Zealand Dairy Statistics 2015–2016. Industry statistics: population. Retrieved on 17 February 2017 fromhttps://www.dairynz.co.nz/publications/dairyindustry/New%20Zealand%20dairy%20statistics%202015-16.
Romera, AJ, Levy, G, Beukes, PC, Clark, DA and Glassey, CB 2012. A urine patch framework to simulate nitrogen leaching on New Zealand dairy farms. Nutrient Cycling in Agroecosystems 92, 329346.
Roseler, DK, Ferguson, JD, Sniffen, CJ and Herrema, J 1993. Dietary protein degradability effects on plasma and milk urea nitrogen and milk non-protein nitrogen in Holstein cows. Journal of Dairy Science 76, 525534.
Sebek, L, van Riel, J and de Jong, G 2007. The breeding value for milk urea as predictor for the efficiency of protein utilization in dairy cows. Report 81 from Animal Sciences Group of Wageningen University, Wageningen, The Netherlands.
Selbie, DR, Buckthought, LE and Shepherd, MA 2015. The challenge of the urine patch for managing nitrogen in grazed pasture systems. Advances in Agronomy 129, 229292.
Spek, JW 2013. Variation of milk urea in dairy cattle: a study on factors that affect the relationship between urea concentration in milk and urea concentration in urine. PhD thesis, Wageningen University, Wageningen, The Netherlands.
Spek, JW, Dijkstra, J, van den Borne, JJGC and Bannink, A 2012. Short communication: Assessing urea transport from milk to blood in dairy cows. Journal of Dairy Science 95, 65366541.
Stoop, WM, Bovenhuis, H and van Arendonk, JAM 2007. Genetic parameters for milk urea nitrogen in relation to milk production traits. Journal of Dairy Science 90, 19811986.
Vallimont, JE, Dechow, CD, Daubert, JM, Dekleva, MW, Blum, JW, Barlieb, CM, Liu, W, Varga, GA, Heinrichs, AJ and Baumrucker, CR 2011. Short communication: Heritability of gross feed efficiency and associations with yield, intake, residual intake, body weight, and body condition score in 11 commercial Pennsylvania tie stalls. Journal of Dairy Science 94, 21082113.
Van Kaam, JBCHM 1998. Gibanal 2.9. Analyzing program for Markov Chain Monte Carlo sequences. Department of Animal Sciences, Wageningen Agricultural University, Wageningen, The Netherlands.
Wood, GM, Boettcher, PJ, Jamrozik, J, Jansen, GB and Kelton, DF 2003. Estimation of genetic parameters for concentrations of milk urea nitrogen. Journal of Dairy Science 86, 24622469.

Keywords

Related content

Powered by UNSILO

Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion

  • P. R. Beatson (a1), S. Meier (a2), N. G. Cullen (a3) and H. Eding (a4)
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: