Skip to main content Accessibility help
×
Home

Effect of dietary chromium supplementation on meat nutritional quality and antioxidant status from broilers fed with Camelina-meal-supplemented diets

  • A. E. Untea (a1), T. D. Panaite (a1), C. Dragomir (a1), M. Ropota (a1), M. Olteanu (a1) and I. Varzaru (a1)...

Abstract

Poultry meat is a valuable source of nutrients and the enrichment with health-promoting substances such as polyunsaturated fatty acids (n-3 PUFA) is an important factor for consumers’ choice. Camelina meal (Camelina sativa) is an animal feedstuff used to achieve this goal, but the administration of n-3 PUFA-enriched diets in broiler nutrition can accelerate the oxidative processes in meat leading to a decreased quality of final product. The aim of this study was to investigate the effect of the organic Cr as chromium picolinate (CrPic) on meat quality, fatty acid profile of fat and oxidative stability of meat from broilers fed supplemented dietary Camelina meal. An experiment was conducted on 240 Ross 308 broiler chicken aged 14 days which were assigned to 6 dietary treatments in a randomized complete block design with a 2 × 3 factorial arrangement. Within the treatment arrangement two concentrations of Camelina meal (0% and 3%) and three concentrations of Cr3+ (0, 200 and 400 μg/kg) were used. Dietary treatments were: (1) Control diet (C) containing a corn–soybean diet with no added Camelina meal or Cr3+; (2) a C diet containing an additional 200 μg/kg of Cr3+ as CrPic; (3) a C diet containing an additional 400 μg/kg of Cr3+ as CrPic; (4) a C diet containing an additional 3% Camelina meal; (5) diet 2 containing an additional 3% Camelina meal; (6) diet 3 containing an additional 3% Camelina meal. Chromium supplementation significantly (P<0.05) increased the CP concentrations and significantly (P<0.05) decreased the crude fat concentrations in breast samples. The Camelina meal groups presented higher values of unsaturated fatty acids, particularly n-3 fatty acids (P<0.05). In CrPic groups, increased retention of Zn and Fe (P < 0.05) was observed in breast samples, compared to control group, and thiobarbituric acid reactive substances values were significantly (P<0.05) smaller. Myoglobin fraction (metmyoglobin and oximyoglobin) concentrations differ significantly (P<0.05) from the control group, under the influence of Cr3+ supplements. This study found that broilers fed with CrPic supplements showed improved mineral composition and oxidative stability of breast meat, proving an effective protection of lipid molecules from oxidation in PUFA-enriched meat.

Copyright

Corresponding author

References

Hide All
Anandhi, M, Mathivanan, R, Viswanathan, K and Mohan, B 2006. Dietary inclusion of organic chromium on production and carcass characteristics of broilers. International Journal of Poultry Science 5, 880884.
Aziza, AE, Quezada, N and Cherian, G 2010. Antioxidative effect of dietary Camelina meal in fresh, stored, or cooked broiler chicken meat. Poultry Science 89, 27112718.
Baron, CP and Andersen, HJ 2002. Myoglobin-induced lipid oxidation. A review. Journal of Agricultural and Food Chemistry 50, 38873897.
Botsoglou, NA, Fletouris, DJ, Papageorgiou, GE, Vassilopoulos, VN, Mantis, AJ and Trakatellis, AG 1994. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. Journal of Agricultural and Food Chemistry 42, 19311937.
Cherian, G 2012. Camelina sativa in poultry diets: Opportunities and challenges. In Biofuel co-products as livestock feed, Makkar, HPS, ed. pp. 303310. Food and Agriculture Organization of the United Nations, Rome, Italy.
Cherian, G, Campbell, A and Parker, T 2009. Egg quality and lipid composition of eggs from hens fed Camelina sativa. Journal of Applied Poultry Research 18, 143150.
Coetzee, GJM andHoffman, LC 2002. Effects of various dietary n-3/n-6 fatty acid ratios on the performance and body composition of broilers. South African Journal of Animal Science 32, 175184.
Feng, W, Li, B, Liu, J, Chai, Z, Zhang, P, Gao, Y and Zhao, J 2003. Study of chromium containing proteins in sub cellular fractions of rat liver by enriched stable isotopic tracer technique and gel filtration chromatography. Analytical and Bioanalytical Chemistry 375, 363368.
Folch, J, Lees, M and Sloane Stanley, GH 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226, 497509.
Hossain, SM, Barreto, SL and Silva, CG 1998. Growth performance and carcass composition of broilers fed supplemental chromium from chromium yeast. Animal Feed Science and Technology 71, 217228.
International Organization for Standardization (ISO) 2001. SR ISO 6492:2001. Animal feeding stuffs – Determination of fat content. International Organization for Standardization, Geneva, Switzerland.
International Organization for Standardization (ISO) 2009. SR EN ISO 5983-2:2009. Animal feeding stuffs – Determination of nitrogen content and calculation of crude protein content – Part 2: Block digestion/steam distillation method. International Organization for Standardization, Geneva, Switzerland.
Kim, YH, Han, IK, Choi, YJ, Shin, IS, Chae, BJ and Kang, TH 1996. Effect of dietary levels of chromium picolinate on growth performance, carcass quality, and serum traits in broiler chicks Asian-Australasian. Journal of Animal Sciences 9, 341347.
Kroliczewska, B, Zawadzki, W, Dobrzanski, Z and Kaczmarek Oliwa, A 2004. Changes in selected serum parameters of broiler chicken fed supplemental chromium. Journal of Animal Physiology and Animal Nutrition 88, 393400.
Lynch, and Faustman, 2000. Effect of aldehyde lipid peroxidation products on myoglobin. Journal of Agricultural and Food Chemistry 48, 600604.
McNamara, JP andValdez, F 2005. Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. Journal of Dairy Science 88, 24982507.
Min, B and Ahn, DU 2005. Mechanism of lipid peroxidation in meat and meat products – A review. Food Science and Biotechnology 14, 152163.
Panaite, T, Criste, RD, Ropota, M, Cornescu, GM, Alexandrescu, DC, Criste, V, Vasile, G, Olteanu, M andUntea, A 2016. Effect of layer diets enriched in Omega-3 fatty acids supplemented with Cu on the nutritive value of the eggs. Romanian Biotechnological Letters 21, 1175411762.
Pechova, A and Pavlata, L 2007. Chromium as an essential nutrient: A review. Veterinarni Medicina-Praha 52, 1.
Pegg, RB 2005. Water, protein, enzymes, lipids and carbohydrates. In Handbook of food analytical chemistry (eds. Wrolstad, RE, Acree, TE, Decker, EA, Penner, MH, Reid, DS, Schwartz, SJ, Shoemaker, CF, Smith, D andSporns, P), pp. 515522. John Wiley & Sons, Hoboken, NJ, USA.
Powell, SR 2000. The antioxidant properties of zinc. The Journal of Nutrition 130, 1447S1454S.
Rêczajska, W, Jêdrzejczak, R and Szteke, B 2005. Determination of chromium content of food and beverages of plant origin Polish. Journal of Food and Nutrition Sciences 14, 183188.
Regulation (EC) 2009. No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Official Journal of the European Union 54, 1130.
Sahin, K and Kucuk, O 2003. Zinc supplementation alleviates heat stress in laying Japanese quail. The Journal of Nutrition 133, 28082811.
Sahin, K and Sahin, N 2002. Effects of chromium picolinate and ascorbic acid dietary supplementation on nitrogen and mineral excretion of laying hens reared in a low ambient temperature (7 C). Acta Veterinaria Brno 71, 183189.
Sahin, N, Akdemir, F, Tuzcu, M, Hayirli, A, Smith, MO and Sahin, K 2010. Effects of supplemental chromium sources and levels on performance, lipid peroxidation and proinflammatory markers in heat-stressed quails. Animal Feed Science and Technology 159, 143149.
Sahin, N, Onderci, M and Sahin, K 2002. Effects of dietary chromium and zinc on egg production, egg quality, and some blood metabolites of laying hens reared under low ambient temperature. Biological Trace Element Research 85, 4758.
Sakhari, M, Jeacock, MK and Shepherd, DA 1992. Regulation of intracellular proteindegradation in the isolated perfused liver of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology 101, 1721.
Samanta, S, Haldar, S, Bahadur, V and Ghosh, TK 2008. Chromium picolinate can ameliorate the negative effects of heat stress and enhance performance, carcass and meat traits in broiler chickens by reducing the circulatory cortisol level. Journal of Science of Food and Agriculture 88, 787796.
Shahidi, F and Zhong, Y 2005. Lipid oxidation: Measurement methods Bailey’s industrial oil and fat products. In Bailey’s industrial oil and fat products (ed. Shahidi, F), pp. 357385. John Wiley & Sons, Hoboken, NJ, USA.
Sirirat, N, Lu, JJ, Hung, ATY and Lien, TF 2013. Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. Journal of Agricultural Science 5, 150159.
Tang, J, Faustman, C and Hoagland, TA 2004. Krzywicki revisited: equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. Journal of Food Science 69, C717C720.
Toghyani, M, Toghyani, M, Shivazad, M, Gheisari, A and Bahadoran, R 2012. Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits, and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biological Trace Element Research 146, 171180.
Untea, A, Criste, RC and Vladescu, L 2012. Development and validation of a microwave digestion-FAAS procedure for Cu, Mn and Zn determination in liver. Revista de Chimie 63, 341346.
Vertuani, S, Angusti, A and Manfredini, S 2004. The antioxidants and pro-antioxidants network: an overview. Current Pharmaceutical Design 10, 16771694.
Viriyarattanasak, C, Hamada-Sato, N, Watanabe, M, Kajiwara, K and Suzuki, T 2011. Equations for spectrophotometric determination of relative concentrations of myoglobin derivatives in aqueous tuna meat extracts. Food Chemistry 127, 656661.
Wang, MQ and Xu, ZR 2004. Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian Australasian Journal of Animal Sciences 17, 11181122.
Zago, MP and Oteiza, PI 2001. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radical Biology and Medicine 31, 266274.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed