Skip to main content Accessibility help

Dynamics of myosin heavy chain isoform transition in the longissimus muscle of domestic and wild pigs during growth: a comparative study

  • G. Fazarinc (a1), M. Vrecl (a1), D. Škorjanc (a2), T. Čehovin (a3) and M. Čandek-Potokar (a4)...


Dynamics of myofiber differentiation/maturation in porcine skeletal muscle is associated with domestication, breeding and rearing conditions. This study was aimed to comparatively elucidate the age-dependent myosin heavy chain (MyHC) isoform expression and transition pattern in domestic and wild pig (WP) skeletal muscle from birth until adulthood. Domestic pigs (DPs) of Large White breed raised in conventional production system were compared with WPs reared in a large hunting enclosure. Muscle samples for immuno/enzyme histochemistry were taken from the longissimus dorsi muscle within 24 h postmortem at 24 to 48 h, 21 to 23 days, 7 months and ~2 years postpartum. Based on the antibody reactivity to MyHCs (NCL-MHCs, A4.74, BF-F3) and succinate dehydrogenase activity, myofibers were classified into I, I/IIa, IIa, IIx and IIb types. In addition, foetal MyHC expression was determined with the use of F158.4C10 antibody. Maturation of the longissimus dorsi muscle in the WP was characterized by an accelerated transformation of the fast to slow MyHC during the first hours postpartum, followed by differentiation towards oxidative myofibers in which type I, IIa and IIx MyHCs predominated. In the DP, the transformation shifted towards glycolytic myofibers that expressed MyHC-IIb. The expression of foetal MyHC was higher in the DP than in the WP at 1 day of age, and the decline in the foetal MyHC during the first 3 weeks was more rapid in the WP than in the DP denoting an accelerated early postnatal muscle maturation in WP than DP piglets. All foetal MyHC-positive myofibers co-expressed IIa isoform, but not vice versa. The intense myofiber hypertrophy was evident from 3 weeks until 7 months of age. In this period, the myofiber cross-sectional area increased up to 10- and 20-fold in the WP and the DP, respectively. In the DP, the hypertrophy of all myofiber types was more pronounced than in the WP, particularly the hypertrophy of IIx and IIb myofibers. To summarize, the comparison between growing DP with wild ancestors showed that genetic selection and rearing conditions lead to substantial changes in the direction and intensity of postnatal MyHC transformation as evidenced by different proportion of individual myofiber types and differences in their hypertrophic potential.


Corresponding author


Hide All
Bee, G 2004. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter. Journal of Animal Science 82, 826836.
Berard, J, Kalbe, C, Losel, D, Tuchscherer, A and Rehfeldt, C 2011. Potential sources of early-postnatal increase in myofibre number in pig skeletal muscle. Histochemistry and Cell Biology 136, 217225.
Bogucka, J, Kapelanski, W, Elminowska-Wenda, G, Walasik, K and Lewandowska, KL 2008. Comparison of microstructural traits of Musculus longissimus lumborum in wild boars, domestic pigs and wild boar/domestic pig hybrids. Archiv Fur Tierzucht 51, 359365.
Bottinelli, R, Betto, R, Schiaffino, S and Reggiani, C 1994. Maximum shortening velocity and coexistence of myosin heavy chain isoforms in single skinned fast fibres of rat skeletal muscle. Journal of Muscle Research and Cell Motility 15, 413419.
Chang, KC and Fernandes, K 1997. Developmental expression and 5′ end cDNA cloning of the porcine 2x and 2b myosin heavy chain genes. DNA and Cell Biology 16, 14291437.
Eizema, K, van den Burg, M, Kiri, A, Dingboom, EG, van Oudheusden, H, Goldspink, G and Weijs, WA 2003. Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle. The Journal of Histochemistry and Cytochemistry 51, 12071216.
Fazarinc, G, Ursic, M, Kantura, V, Vukicevic, T, Skrlep, M and Candek-Potokar, M 2013. Expression of myosin heavy chain isoforms in longissimus muscle of domestic and wild pig. Slovenian Veterinary Research 50, 6774.
Gagniere, H, Picard, B and Geay, Y 1999. Contractile differentiation of foetal cattle muscles: intermuscular variability. Reproduction Nutrition Development 39, 637655.
Graziotti, GH, Menendez, JMR, Rios, CM, Cossu, ME, Bosco, A, Affricano, NO, Ceschel, AP, Moisa, S and Basso, L 2011. Relationship between myosin isoforms and meat quality traits in pig semitendinosus neuromuscular compartments. Asian-Australasian Journal of Animal Sciences 24, 125129.
Graziotti, GH, Rios, CM and Rivero, JL 2001. Evidence for three fast myosin heavy chain isoforms in type II skeletal muscle fibers in the adult llama (Lama glama). The Journal of Histochemistry and Cytochemistry 49, 10331044.
Harrison, AP, Rowlerson, AM and Dauncey, MJ 1996. Selective regulation of myofiber differentiation by energy status during postnatal development. The American Journal of Physiology 270, R667R674.
Herpin, P, Lossec, G, Schmidt, I, Cohen-Adad, F, Duchamp, C, Lefaucheur, L, Goglia, F and Lanni, A 2002. Effect of age and cold exposure on morphofunctional characteristics of skeletal muscle in neonatal pigs. Pflugers Archiv – European Journal of Physiology 444, 610618.
Lefaucheur, L, Ecolan, P, Lossec, G, Gabillard, JC, Butler-Browne, GS and Herpin, P 2001. Influence of early postnatal cold exposure on myofiber maturation in pig skeletal muscle. Journal of Muscle Research and Cell Motility 22, 439452.
Lefaucheur, L, Ecolan, P, Plantard, L and Gueguen, N 2002. New insights into muscle fiber types in the pig. The Journal of Histochemistry and Cytochemistry 50, 719730.
Lefaucheur, L, Edom, F, Ecolan, P and Butler-Browne, GS 1995. Pattern of muscle fiber type formation in the pig. Developmental Dynamics 203, 2741.
Lefaucheur, L, Hoffman, RK, Gerrard, DE, Okamura, CS, Rubinstein, N and Kelly, A 1998. Evidence for three adult fast myosin heavy chain isoforms in type II skeletal muscle fibers in pigs. Journal of Animal Science 76, 15841593.
Lefaucheur, L, Le Dividich, J, Mourot, J, Monin, G, Ecolan, P and Krauss, D 1991. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. Journal of Animal Science 69, 28442854.
Losel, D, Franke, A and Kalbe, C 2013. Comparison of different skeletal muscles from growing domestic pigs and wild boars. Archiv Fur Tierzucht 56, 766777.
Mascarello, F, Stecchini, ML, Rowlerson, A and Ballocchi, E 1992. Tertiary myotubes in postnatal growing pig muscle detected by their myosin isoform composition. Journal of Animal Science 70, 18061813.
Muller, E, Rutten, M, Moser, G, Reiner, G, Bartenschlager, H and Geldermann, H 2002. Fibre structure and metabolites in M. longissimus dorsi of wild boar, Pietrain and Meishan pigs as well as their crossbred generations. Journal of Animal Breeding and Genetics 119, 125137.
Nachlas, MM, Tsou, KC, de Souza, E, Cheng, CS and Seligman, AM 1957. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. The Journal of Histochemistry and Cytochemistry 5, 420436.
Pette, D and Staron, RS 2000. Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique 50, 500509.
Rehfeldt, C, Henning, M and Fiedler, I 2008. Consequences of pig domestication for skeletal muscle growth and cellularity. Livestock Science 116, 3041.
Ruusunen, M and Puolanne, E 2004. Histochemical properties of fibre types in muscles of wild and domestic pigs and the effect of growth rate on muscle fibre properties. Meat Science 67, 533539.
Schiaffino, S, Gorza, L, Pitton, G, Saggin, L, Ausoni, S, Sartore, S and Lomo, T 1988. Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Developmental Biology 127, 111.
Schiaffino, S, Gorza, L, Sartore, S, Saggin, L, Ausoni, S, Vianello, M, Gundersen, K and Lomo, T 1989. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. Journal of Muscle Research and Cell Motility 10, 197205.
Smerdu, V, Cehovin, T, Strbenc, M and Fazarinc, G 2009. Enzyme- and immunohistochemical aspects of skeletal muscle fibers in brown bear (Ursus arctos). Journal of Morphology 270, 154161.
Smerdu, V, Karsch-Mizrachi, I, Campione, M, Leinwand, L and Schiaffino, S 1994. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. The American Journal of Physiology 267, C1723C1728.
Strbenc, M, Smerdu, V, Zupanc, M, Tozon, N and Fazarinc, G 2004. Pattern of myosin heavy chain isoforms in different fibre types of canine trunk and limb skeletal muscles. Cells, Tissues, Organs 176, 178186.
Szentkuti, L and Schlegel, O 1985. Genetic and functional effects on fiber type composition and fiber diameters in the longissimus muscle of the thorax and the semitendinous muscle of swine. Studies of exercised domestic swine and wild swine kept under restricted mobility. Deutsche Tierärztliche Wochenschrift 92, 9397.
Talmadge, RJ, Grossman, EJ and Roy, RR 1996. Myosin heavy chain composition of adult feline (Felis catus) limb and diaphragm muscles. The Journal of Experimental Zoology 275, 413420.
Tanabe, R, Muroya, S and Chikuni, K 1998. Sequencing of the 2a, 2x, and slow isoforms of the bovine myosin heavy chain and the different expression among muscles. Mammalian Genome 9, 10561058.
Weiler, U, Appell, HJ, Kremser, M, Hofacker, S and Claus, R 1995. Consequences of selection on muscle composition. A comparative study on gracilis muscle in wild and domestic pigs. Anatomia Histologia Embryologia 24, 7780.
Wilson, SJ, McEwan, JC, Sheard, PW and Harris, AJ 1992. Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle. Journal of Muscle Research and Cell Motility 13, 534550.
Wimmers, K, Ngu, NT, Jennen, DG, Tesfaye, D, Murani, E, Schellander, K and Ponsuksili, S 2008. Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. Journal of Animal Science 86, 795803.


Related content

Powered by UNSILO

Dynamics of myosin heavy chain isoform transition in the longissimus muscle of domestic and wild pigs during growth: a comparative study

  • G. Fazarinc (a1), M. Vrecl (a1), D. Škorjanc (a2), T. Čehovin (a3) and M. Čandek-Potokar (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.