Skip to main content Accessibility help
×
Home

Development of livestock production in the tropics: farm and farmers’ perspectives

  • S. J. Oosting (a1), H. M. J. Udo (a1) and T. C. Viets (a1)

Abstract

Because of an increasing demand for animal-source foods, an increasing desire to reduce poverty and an increasing need to reduce the environmental impact of livestock production, tropical farming systems with livestock must increase their productivity. An important share of the global human and livestock populations are found within smallholder mixed-crop–livestock systems, which should, therefore, contribute significantly towards this increase in livestock production. The present paper argues that increased livestock production in smallholder mixed-crop–livestock systems faces many constraints at the level of the farm and the value chain. The present paper aims to describe and explain the impact of increased production from the farm and farmers’ perspective, in order to understand the constraints for increased livestock production. A framework is presented that links farming systems to livestock value chains. It is concluded that farming systems that pass from subsistence to commercial livestock production will: (1) shift from rural to urban markets; (2) become part of a different value chain (with lower prices, higher demands for product quality and increased competition from peri-urban producers and imports); and (3) have to face changes in within-farm mechanisms and crop–livestock relationships. A model study showed that feed limitation, which is common in tropical farming systems with livestock, implies that maximum herd output is achieved with small herd sizes, leaving low-quality feeds unutilised. Maximal herd output is not achieved at maximal individual animal output. Having more animals than required for optimal production – which is often the case as a larger herd size supports non-production functions of livestock, such as manure production, draught, traction and capital storage – goes at the expense of animal-source food output. Improving low-quality feeds by treatment allows keeping more animals while maintaining the same level of production. Ruminant methane emission per kg of milk produced is mainly determined by the level of milk production per cow. Part of the methane emissions, however, should be attributed to the non-production functions of ruminants. It was concluded that understanding the farm and farmers’ perceptions of increased production helps with the understanding of productivity increase constraints and adds information to that reported in the literature at the level of technology, markets and institutions.

Copyright

Corresponding author

E-mail: simon.oosting@wur.nl

References

Hide All
Abegaz, A, van Keulen, H and Oosting, SJ 2007. Feed resources, livestock production and soil carbon dynamics in Teghane, Northern Highlands of Ethiopia. Agricultural Systems 94, 391404.
Aklilu, HA 2007. Village poultry in Ethiopia. PhD, Wageningen University, Wageningen, the Netherlands.
Amankwah, K 2013. Enhancing food security in northern Ghana through smallholder small ruminant production. PhD, Wageningen University, Wageningen, the Netherlands.
Amankwah, K, Klerkx, L, Oosting, SJ, Sakyi-Dawson, O, van der Zijpp, AJ and Millar, D 2012. Diagnosing constraints to market participation of small ruminant producers in northern Ghana: an innovation systems analysis. NJAS Wageningen Journal of Life Sciences 60−63, 3749.
Ayantunde, A, de Leeuw, J, Turner, MD, Said, M 2011. Challenges of assessing the sustainability of (agro)-pastoral systems. Livestock Science 139, 3043.
Baltenweck, I, Ouma, R, Anunda, F, Mwai, O and Romney, D 2004. Artificial or natural insemination: the demand for breeding services by smallholders. Proceedings of 9th KARI Biennial Scientific Conference and Research week. 8 to 12 November, Nairobi, Kenya, pp. 1−11.
Barrett, CB 2008. Smallholder market participation: concepts and evidence from eastern and southern Africa. Food Policy 33, 299317.
Bebe, BO 2008. Dairy heifer rearing under increasing intensification of smallholder dairy systems in the Kenya highlands. Livestock Research for Rural Development 20. article no. 23.
Bebe, BO, Udo, HMJ and Thorpe, W 2002. Development of smallholder dairy systems in the Kenya highlands. Outlook on Agriculture 31, 113120.
Bebe, BO, Udo, HMJ, Rowlands, GJ and Thorpe, W 2003a. Smallholder dairy systems in the Kenya highlands: breed preferences and breeding practices. Livestock Production Science 82, 117127.
Bebe, BO, Udo, HMJ, Rowlands, GJ and Thorpe, W 2003b. Smallholder dairy systems in the Kenya highlands: cattle population dynamics under increasing intensification. Livestock Production Science 82, 211221.
Behnke, R and Muthami, D 2011. The contribution of livestock to the Kenyan economy. IGAD LPI working paper No. 03-11. Odessa Centre, Great Wolford, UK. Retrieved August 19, 2013, from http://www.igad-lpi.org/publication/docs/IGADLPI_WP03_11.pdf
Bernard, T and Spielman, DJ 2009. Reaching the rural poor through rural producer organizations? A study of agricultural marketing cooperatives in Ethiopia. Food Policy 34, 6069.
Bosman, HG, Ayeni, AO and Koper-Limbourg, HAG 1996. Farmers’ response to a package of innovations in goat production in south-west Nigeria. Tropical Science 36, 92100.
Budisatria, IGS, Udo, HMJ, CHAM, Eilers and van der Zijpp, AJ 2007. Dynamics of small ruminant production: a case study of central Java, Indonesia. Outlook on Agriculture 36, 145152.
Candler, W and Kumar, N 1998. India: the dairy revolution. The impact of dairy development in India and the World Bank’s contribution. The World Bank, Washington, DC, USA.
Commonwealth Agricultural Bureaux (ARC) 1980. The nutrient requirements of ruminant livestock. Commonwealth Agricultural Bureaux, Slough, UK.
Dahl, G and Hjort, A 1976. Having herds. Pastoral herd growth and household economy. Department of Social Anthropology, University of Stockholm, Sweden.
De Haan, C, Steinfeld, S and Blackburn, H 1997. Livestock & the environment. Finding a balance. Food and Agriculture Organisation, Rome, Italy.
De Haas, Y, Calus, M, Mulder, H, de Haan, M, Bannink, A, Dijkstra, J, Windig, J and Veerkamp, R 2011. Gensignalen voor voerefficiëntie en methaanemissie. Rapport 450. Wageningen UR Livestock Research, Lelystad, the Netherlands.
De Jong, R 1996. Dairy stock development and milk production with smallholders. PhD, Wageningen University, Wageningen, the Netherlands.
De Vries, M and de Boer, IJM 2009. Comparing environmental impacts of livestock products: a review of life cycle assessments. Livestock Science 128, 111.
Dieye, PN, Duteutre, G, Cuzon, J-R and Dia, D 2007. Livestock, liberalization and trade negotiations in West Africa. Outlook on Agriculture 36, 9399.
Dorward, A, Anderson, S, Nava, Y, Pattison, J, Paz, R, Rushton, J and Sanchez Vera, E 2009. Hanging in, stepping up and stepping out: livelihood aspirations and strategies of the poor. Development in Practice 19, 240247.
Doumbia, D, van Paassen, A, Oosting, SJ and van der Zijpp, AJ 2012. Livestock in the rice-based economy of Office du Niger: the development potential for increased crop-livestock integration through multi-actor processes. NJAS Wageningen Journal of Life Sciences 60−63, 101115.
Food and Agriculture Organization (FAO) 2006. Livestock’s long shadow. Environmental issues and options. Food and Agriculture Organization, Rome, Italy.
FAO 2009. The state of food and agriculture – livestock in the balance. Food and Agriculture Organization, Rome, Italy.
FAO 2013. FAOSTAT. Food and Agriculture Organization, Rome, Italy. Retrieved June to September 2013, from http://faostat3.fao.org/faostat-gateway/go/to/home/E
Frisch, JE and Vercoe, JE 1978. Utilizing breed differences in growth of cattle in the tropics. World Animal Review 25, 812.
Gerber, P, Chilondra, P, Franceschini, G and Menzi, H 2005. Geographical determinants and environmental implications of livestock production intensification in Asia. Bioresource Technology 96, 263276.
Gerber, P, Vellinga, T, Opio, C and Steinfeld, H 2011. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livestock Science 139, 100109.
Gildemacher, PR, Kaguongo, W, Ortiz, O, Tesfaye, A, Woldegiorgis, G, Wagoire, WW, Kakuhenzire, R, Kinyae, PM, Nyongesa, M and Struik, PC 2009. Improving potato production in Kenya, Uganda and Ethiopia: a system diagnosis. Potato Research 52, 173205.
Gryseels, G 1988. Role of livestock on mixed smallholder farms in the Ethiopian highlands. A case study from the Baso and Worena Wereda near Debre Berhan. PhD, Wageningen University, Wageningen, the Netherlands.
Hardin, G 1968. The tragedy of the commons. Science 162, 12431248.
Herrero, M, Grace, D, Njuki, J, Johnson, N, Enahoro, D, Silvestri, S and Rufino, MC 2013. The roles of livestock in developing countries. Animal 7, 318.
Herrero, M, Gerber, P, Vellinga, T, Garnett, T, Leip, A, Opio, C, Westhoek, HJ, Thornton, PK, Olesen, J, Hutchings, N, Montgomery, H, Soussana, J-F, Steinfeld, H and McAllister, TA 2011. Livestock and greenhouse gas emissions: the importance of getting the numbers right. Animal Feed Science and Technology 166−167, 779782.
Herrero, M, Thornton, PK, Notenbaert, AM, Wood, S, Msangi, S, Freeman, HA, Bossio, D, Dixon, J, Peters, M, van de Steeg, J, Lynam, J, Parthasarathy Rao, P, Macmillan, S, Gerard, B, McDermott, J, Seré, C and Rosegrant, M 2010. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327, 822825.
Hounkonnou, D, Kossou, D, Kuyper, TW, Leeuwis, C, Nederlof, ES, Röling, N, Sakyi-Dawson, O, Traoré, M and van Huis, A 2012. An innovation systems approach to institutional change: smallholder development in West Africa. Agricultural Systems 108, 7483.
Hristov, AN, Oh, J, Lee, C, Meinen, R, Montes, F, Ott, T, Firkins, J, Rotz, A, Dell, C, Adesogan, A, Yang, W, Tricarico, J, Kebreab, E, Waghorn, G, Dijkstra, J and Oosting, SJ 2013. Mitigation of greenhouse gas emissions in livestock production – a review of technical options for non-CO2 emissions. In FAO animal production and health paper No. 177. FAO, Rome, Italy.
Jayne, TS, Mather, D and Mghenyi, E 2010. Principal challenges confronting smallholder agriculture in Sub-Saharan Africa. World Development 10, 13841398.
Jones, RJ and Sandland, RL 1974. The relation between animal gain and stocking rate − derivation of the relation from the results of grazing trials. The Journal of Agricultural Science 83, 335342.
Kemp, DR and Michalk, DL 2007. Towards sustainable grassland and livestock management. Journal of Agricultural Science 145, 543564.
Ketelaars, JJMH and Tolkamp, BJ 1992. Towards a new theory of feed intake regulation in ruminants. 1. Causes of differences in voluntary intake: critique of current views. Livestock Production Science 30, 269296.
Kilelu, CW 2013. Unravelling the role of intervention intermediaries in smallholder agricultural development: case studies from Kenya. PhD, Wageningen University, Wageningen, the Netherlands.
Kimani, K and Pickard, J 1998. Recent trends and implications of group ranch sub-division and fragmentation in Kajiado district, Kenya. Geographical Journal 164, 202213.
Kitano, H 2004. Biological robustness. Nature Review Genetics 5, 826837.
Mahama, EA, Andah, EK, Amegashie, DPK and Mensah-Bonsu, A 2013. Break even analysis of broiler production in the Accra-Tema and Kumashi areas. Proceedings 1st International Interdisciplinary Conference, 24 to 26 April, Azores, Portugal. Retrieved September 27, 2013, from http://eujournal.org/index.php/esj/article/view/1492
McCabe, JT, Leslie, PW and DeLuca, L 2010. Adopting cultivation to remain pastoralists: the diversification of Maasai livelihoods in Northern Tanzania. Human Ecology 38, 321334.
McDermott, JJ, Staal, SJ, Freeman, HA, Herrero, M and van der Steeg, JA 2010. Sustaining intensification of smallholder livestock systems in the tropics. Livestock Science 130, 95109.
Mekoya, A, Oosting, SJ, Fernandez-Rivera, S and van der Zijpp, AJ 2008. Farmers’ perceptions about exotic multipurpose fodder trees and constraints to their adoption. Agroforestry Systems 73, 141153.
Moll, H 2005. Costs and benefits of livestock systems and the role of market and non-market relationships. Agricultural Economics 32, 181193.
Omiti, JM, Otieno, DJ, Nyanamba, TO and McCullough, E 2009. Factors influencing the intensity of market participation by smallholder farmers: a case study of rural and peri-urban areas of Kenya. Afjare 3, 5782.
Omiti, JM, Wanyoike, F, Staal, S, Delgado, C and Njoroge, L 2006. Will small-scale dairy producers in Kenya disappear due to economics of scale in production? Contributed paper prepared for presentation at the International Association of Agricultural Economists Conference, 12 to 18 August, Gold Coast, Australia, Retrieved October 1, 2013, http://ageconsearch.umn.edu/bitstream/25674/1/cp060516.pdf
Omore, A, Kurwijila, L and Grace, D 2009. Improving livelihoods in East Africa through livestock research and extension: reflections on changes from the 1950s to the early twenty first century. Tropical Animal Health and Production 41, 10511059.
Onono, JO, Wieland, B and Rushton, J 2012. Productivity in different cattle production systems in Kenya. Tropical Animal Health and Production 45, 18.
Oosting, SJ 1993. Wheat straw as ruminant feed. Effect of supplementation and ammonia treatment on voluntary intake and nutrient availability. PhD, Wageningen University, Wageningen, the Netherlands.
Oosting, SJ, Boekholt, HA, Los, MHM and Leffering, CP 1993. Intake and utilization of energy from ammonia treated and untreated wheat straw by steers and wether sheep fed a basal ration of grass pellets and hay. Animal Production 57, 227236.
Oosting, SJ, Mekoya, A, Fernandez-Rivera, S and van der Zijpp, AJ 2011. Sesbania sesban as a fodder tree in Ethiopian livestock farming systems: feeding practices and farmers’ perceptions of feeding effects on sheep performance. Livestock Science 139, 135142.
Pica-Ciamarra, U and Otte, J 2011. The ‘livestock revolution’: rhetoric and reality. Outlook on Agriculture 40, 719.
Poole, ND, Chitundu, M and Msoni, R 2013. Commercialisation: a meta-approach for agricultural development among smallholder farmers in Africa? Food Policy 41, 155165.
Roy, S and Rangnekar, DV 2006. Farmer adoption of urea treatment of cereal straws for feeding of dairy animals: a success in Mithala milkshed, India. Livestock Research for Rural Development 18. article no. 8.
Rufino, MC 2008. Quantifying the contribution of crop-livestock integration to African farming. PhD, Wageningen University, Wageningen, the Netherlands.
Samdup, T, Udo, HMJ, CAHM, Eilers, Ibrahim, MNM and van der Zijpp, AJ 2010. Crossbreeding and intensification of smallholder crop–cattle farming systems in Bhutan. Livestock Science 132, 126134.
Sarnklong, C, Cone, JW, Pellikaan, W and Hendriks, W 2010. Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian-Australasian Journal of Animal Sciences 23, 680692.
Schiere, JB 1995. Cattle, straw and system control: a study of straw feeding systems. PhD, Wageningen University, Wageningen, the Netherlands.
Schiere, JB and van der Hoek, R 2001. Livestock keeping in urban areas. A review of traditional technologies based on literature and field experience. FAO animal production and health paper No. 151. FAO, Rome, Italy.
Sendalo, ED 2009. Understanding socio-economic dynamic of Maasai pastoralists under changing ecological and policy environment in Tanzania. Thesis, Animal Production Systems Group, Wageningen University, the Netherlands.
Seré, C, van der Zijpp, AJ, Persley, G and Rege, E 2008. Dynamics of livestock production systems, drivers of change and prospects for animal genetic resources. Animal Genetic Resources Information 42, 324.
Sharma, VP, Staal, S, Delgado, C and Singh, RV 2003. Policy, technical, and environmental determinants and implications of the scaling-up of milk production in India. Annex III. Research Report of IFPRI-FAO. International Food Policy Research Institute, Washington DC.
Sumberg, J 2002. The logic of fodder legumes in Africa. Food Policy 27, 285300.
Sumberg, J and Lankoandé, GD 2013. Heifer-in-trust, social protection and graduation: conceptual issues and research questions. Development Policy Review 31, 255271.
Ten Napel, J, van der Veen, AA, Oosting, SJ and Groot Koerkamp, PWG 2011. A conceptual approach to design livestock production systems for robustness to enhance sustainability. Livestock Science 139, 150160.
Tittonell, P, Muriuki, A, Shepherd, KD, Mugendi, D, Kaizzi, KC, Okeyo, J, Verchot, L, Coe, R and Vanlauwe, B 2010. The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa – a typology of smallholder farms. Agricultural Systems 103, 8397.
The International Livestock Research Institute (ILRI) 2011. More meat, milk and fish by and for the poor. Retrieved October 8, 2013, from http://cgspace.cgiar.org/bitstream/handle/10568/3248/CRP37Proposal.pdf?sequence=6
Udo, HMJ, Aklilu, HA, Phong, LT, Bosma, RH, Budisatria, IGS, Patil, BR, Samdup, T and Bebe, BO 2011. Impact of intensification of different types of livestock production in smallholder crop-livestock systems. Livestock Science 139, 2230.
Van Mierlo, B, Regeer, B, van Amstel, M, Arkesteijn, M, Beekman, V, Bunders, J, de Cock Buning, T, Elzen, B, Hoes, A-C and Leewis, C 2010. Reflexive monitoring in action. A guide for monitoring system innovation projects. Communication and innovation studies Wageningen University. Athena Institute Free University, Amsterdam, the Netherlands.
Whittaker, WG 2000. One hundred years of herd improvement and farm management systems in New Zealand 1900-2000. Livestock Improvement Corporation, Hamilton, New Zealand.
World Bank 2007. World development report 2008: agriculture for development World Bank, Washington, DC. Retrieved August 18, 2013, from http://siteresources.worldbank.org/INTWDRS/Resources/477365-1327599046334/8394679-1327606607122/WDR_00_book.pdf
World Bank 2009. Awakening Africa’s sleeping giant: prospects for commercial agriculture in the Guinea savannah zone and beyond World Bank, Washington, DC. Retrieved August 18, 2013, from http://siteresources.worldbank.org/INTARD/Resources/sleeping_giant.pdf
Zemmelink, G, Ifar, S and Oosting, SJ 2003. Optimum utilization of feed resources: model studies and farmers’ practices in two villages in East Java, Indonesia. Agricultural Systems 76, 7794.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Oosting Supplementary Material
Supplementary Material

 Word (43 KB)
43 KB

Development of livestock production in the tropics: farm and farmers’ perspectives

  • S. J. Oosting (a1), H. M. J. Udo (a1) and T. C. Viets (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.