Skip to main content Accessibility help
×
Home

Development and evaluation of the herd dynamic milk model with focus on the individual cow component

  • E. Ruelle (a1) (a2), L. Delaby (a3), M. Wallace (a4) and L. Shalloo (a1)

Abstract

The herd dynamic milk (HDM) model is a dynamic model capable of simulating the performance of individual dairy animals (from birth to death), with a daily time step. Within this study, the HDM model is described and evaluated in relation to milk production, body condition score (BCS) and BCS change throughout lactation by comparing model simulations against data from published experimental studies. The model’s response to variation in genetic potential, herbage allowance and concentrate supplementation was tested in a sensitivity analysis. Data from experiments in Ireland and France over a 3-year period (2009–11) were used to complete the evaluation. The aim of the Irish experiment was to determine the impact of different stocking rates (SRs) (SR1: 3.28 cow/ha, SR2: 2.51 cow/ha) on key physical, biological and economic performance. The aim of the French experiment was to evaluate over a prolonged time period, the ability of two breeds of dairy cows (Holstein and Normande) to produce and to reproduce under two feeding strategies (high level and low level) in the context of compact calving. The model evaluation was conducted at the herd level with separate evaluations for the primiparous and multiparous cows. The evaluation included the two extreme SRs for the Irish experiment, and an evaluation at the overall herd and individual animal level for the different breeds and feeding levels for the French data. The comparison of simulation and experimental data for all scenarios resulted in a relative prediction error, which was consistently <15% across experiments for weekly milk production and BCS. In relation to BCS, the highest root mean square error was 0.27 points of BCS, which arose for Holstein cows in the low feeding group in late lactation. The model responded in a realistic fashion to variation in genetic potential for milk production, herbage allowance and concentrate supplementation.

Copyright

Corresponding author

References

Hide All
Baudracco, J, Lopez-Villalobos, N, Holmes, CW, Comeron, EA, Macdonald, KA and Barry, TN 2013. e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems. Animal 7, 870878.
Baudracco, J, Lopez-Villalobos, N, Holmes, CW, Comeron, EA, Macdonald, KA, Barry, TN and Friggens, NC 2012. e-Cow: an animal model that predicts herbage intake, milk yield and live weight change in dairy cows grazing temperate pastures, with and without supplementary feeding. Animal 6, 980993.
Bazin, S, Augeard, P, Carteau, M, Champion, H, Chiliard, Y, Disenhaus, C, Durand, G, Espinasse, R, Gascoin, A, Godineau, M, Jouanne, D, Ollivier, O and Remond, B 1984. Grille de notation de l’etat d’engraissement des vaches pie noires. RNED bovin, Paris, France.
Bibby, J and Toutenburg, H 1977. Prediction and improved estimation in linear models. Wiley, New York, USA.
Bruce, JM, Broadbent, PJ and Topps, JH 1984. A model of the energy system of lactating and pregnant cows. Animal Science 38, 351362.
Buckley, F, Dillon, P, Rath, M and Veerkamp, RF 2000. The relationship between genetic merit for yield and live weight, condition score, and energy balance of spring calving Holstein Friesian dairy cows on grass based systems of milk production. Journal of Dairy Science 83, 18781886.
Buckley, F, O’Sullivan, K, Mee, JF, Evans, RD and Dillon, P 2003. Relationships among milk yield, body condition, cow weight, and reproduction in spring-calved Holstein-Friesians. Journal of Dairy Science 86, 23082319.
Cutullic, E, Delaby, L, Gallard, Y and Disenhaus, C 2011. Dairy cows’ reproductive response to feeding level differs according to the reproductive stage and the breed. Animal 5, 731740.
Delaby, L, Faverdin, P, Michel, G, Disenhaus, C and Peyraud, J 2009. Effect of different feeding strategies on lactation performance of Holstein and Normande dairy cows. Animal 3, 891905.
Delaby, L, Horan, B, O’Donovan, MA, Gallard, Y and Peyraud, JL 2010b. Are high genetic merit dairy cows compatible with low input grazing systems? General Meeting of the European Grassland Federation, 29 August to 2 September 2010, Kiel, DEU, pp. 928–930, http://www.europeangrassland.org/fileadmin/media/EGF2010_GSE_vol15.pdf.
Delaby, L, Leurent, S, Gallard, Y and Schmitt, T 2010a. Effet de la race, de la parité, du potentiel laitier et de l’état au vêlage sur l’évolution de l’état corporel des vaches laitières au cours de la lactation. 17èmes Rencontres Recherches Ruminants, 8 and 9 December 2010, Paris, France, pp. 260, http://www.journees3r.fr/IMG/pdf/2010_08_13_Delaby.pdf.
Delaby, L, Peyraud, J-L, Foucher, N and Michel, G 2003. The effect of two contrasting grazing managements and level of concentrate supplementation on the performance of grazing dairy cows. Animal Research 52, 437460.
Delagarde, R, Faverdin, P, Baratte, C and Peyraud, JL 2011a. GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 2. Prediction of intake under rotational and continuously stocked grazing management. Grass and Forage Science 66, 4560.
Delagarde, R, Valk, H, Mayne, CS, Rook, AJ, González-Rodríguez, A, Baratte, C, Faverdin, P and Peyraud, JL 2011b. GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 3. Simulations and external validation of the model. Grass and Forage Science 66, 6177.
Faverdin, P, Delagarde, R, Delaby, L and Meschy, F 2010. Alimentation des vaches laitières. In Alimentation des bovins, ovins et caprins (ed. INRA), pp. 2358. Quae, Versailles Cedex, France.
Faverdin, P, Baratte, C, Delagarde, R and Peyraud, JL 2011. GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 1. Prediction of intake capacity, voluntary intake and milk production during lactation. Grass and Forage Science 66, 2944.
Friggens, NC, Ingvartsen, KL and Emmans, GC 2004. Prediction of body lipid change in pregnancy and lactation. Journal of Dairy Science 87, 9881000.
Fuentes-Pila, J, DeLorenzo, MA, Beede, DK, Staples, CR and Holter, JB 1996. Evaluation of equations based on animal factors to predict intake of lactating Holstein cows. Journal of Dairy Science 79, 15621571.
Fulkerson, WJ, Davison, TM, Garcia, SC, Hough, G, Goddard, ME, Dobos, R and Blockey, M 2008. Holstein-Friesian dairy cows under a predominantly grazing system: interaction between genotype and environment. Journal of Dairy Science 91, 826839.
Geweke, J 1991. Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities. Proceeding of the 23rd Computing Science and Statistics, 22–24 April, Seattle, WA, USA, pp. 571–578.
Hoden, A, Peyraud, J, Muller, A, Delaby, L, Faverdin, P, Peccatte, J and Fargetton, M 1991. Simplified rotational grazing management of dairy cows: effects of rates of stocking and concentrate. Journal of Agricultural Science 116, 417428.
Horan, B, Dillon, P, Faverdin, P, Delaby, L, Buckley, F and Rath, M 2005. The interaction of strain of Holstein-Friesian cows and pasture-based feed systems on milk yield, body weight, and body condition score. Journal of Dairy Science 88, 12311243.
Horan, B, Mee, JF, Rath, M, O’Connor, P and Dillon, P 2004. The effect of strain of Holstein-Friesian cow and feeding system on reproductive performance in seasonal-calving milk production systems. Animal Science 79, 453467.
Hutchinson, I, Shalloo, L and Butler, S 2013. Expanding the dairy herd in pasture-based systems: the role of sexed semen use in virgin heifers and lactating cows. Journal of Dairy Science 96, 67426752.
INRA 2010. Alimentation des bovins, ovins et caprins. Quae, Versailles Cedex, France.
Jacquot, A-L 2012. Dynamilk: un simulateur pour étudier les compromis entre performances animales, utilisation des ressources herbagères et recherche d’autonomie alimentaire dans les systèmes bovins laitiers de montagne. Agricultural Science, Blaise Pascal University, Clermont-Ferrand II, France.
Jouven, M, Agabriel, J and Baumont, R 2008. A model predicting the seasonal dynamics of intake and production for suckler cows and their calves fed indoors or at pasture. Animal Feed Science and Technology 143, 256279.
Lin, LIK 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255268.
Martin, O and Sauvant, D 2010a. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 1. Trajectories of life function priorities and genetic scaling. Animal 4, 20302047.
Martin, O and Sauvant, D 2010b. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 2. Voluntary intake and energy partitioning. Animal 4, 20482056.
Masselin, S, Sauvant, D, Chapoutot, P and Milan, D 1987. Les modèles d’ajustement des courbes de lactation. Annales de Zootechnie 36, 171206.
McBride, GB 2005. A proposal for strength-of-agreement criteria for Lin.s.concordance correlation coefficient. NIWA Client Report No. HAM2005-062. Retrieved May 12, 2016, from http://www.medcalc.org/download/pdf/McBride2005.pdf.
McCarthy, B, Delaby, L, Pierce, KM, Brennan, A and Horan, B 2013. The effect of stocking rate and calving date on milk production of Holstein–Friesian dairy cows. Livestock Science 153, 123134.
McCarthy, B, Pierce, KM, Delaby, L, Brennan, A and Horan, B 2012. The effect of stocking rate and calving date on reproductive performance, body state, and metabolic and health parameters of Holstein-Friesian dairy cows. Journal of Dairy Science 95, 13371348.
McCarthy, S, Berry, DP, Dillon, P, Rath, M and Horan, B 2007. Influence of Holstein-Friesian strain and feed system on body weight and body condition score lactation profiles. Journal of Dairy Science 90, 18591869.
McEvoy, M, Kennedy, E, Murphy, JP, Boland, TM, Delaby, L and O’Donovan, M 2008. The effect of herbage allowance and concentrate supplementation on milk production performance and dry matter intake of spring-calving dairy cows in early lactation. Journal of Dairy Science 91, 12581269.
Nickerson, CAE 1997. A note on ‘a concordance correlation coefficient to evaluate reproducibility’. Biometrics 53, 15031507.
Rotz, CA, Mertens, DR, Buckmaster, DR, Allen, MS and Harrison, JH 1999. A dairy herd model for use in whole farm simulations. Journal of Dairy Science 82, 28262840.
Ruelle, E, Shalloo, L, Wallace, M and Delaby, L 2015. Development and evaluation of the pasture-based herd dynamic milk (PBHDM) model for dairy systems. European Journal of Agronomy 71, 106114.
Vérité, R and Delaby, L 2000. Relation between nutrition, performances and nitrogen excretion in dairy cows. Annales de Zootechnie 49, 217230.

Keywords

Type Description Title
PDF
Supplementary materials

Ruelle supplementary material
Ruelle supplementary material

 PDF (142 KB)
142 KB

Development and evaluation of the herd dynamic milk model with focus on the individual cow component

  • E. Ruelle (a1) (a2), L. Delaby (a3), M. Wallace (a4) and L. Shalloo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed