Skip to main content Accessibility help
×
Home

Comparison of performance and metabolism from late pregnancy to early lactation in dairy cows with elevated v. normal body condition at dry-off

  • K. Schuh (a1) (a2), H. Sadri (a1) (a3), S. Häussler (a1), L. A. Webb (a1), C. Urh (a1), M. Wagner (a4), C. Koch (a5), J. Frahm (a6), S. Dänicke (a6), G. Dusel (a2) and H. Sauerwein (a1)...

Abstract

Excessive mobilization of body reserves during the transition from pregnancy to lactation imposes a risk for metabolic diseases on dairy cows. We aimed to establish an experimental model for high v. normal mobilization and herein characterized performance, metabolic and endocrine changes from 7 weeks antepartum (a.p.) to 12 weeks postpartum (p.p.). Fifteen weeks a.p., 38 pregnant multiparous Holstein cows were allocated to two groups that were fed differently to reach either high or normal body condition scores (HBCS: 7.2 NEL MJ/kg dry matter (DM); NBCS: 6.8 NEL MJ/kg DM) at dry-off. Allocation was also based on differences in body condition score (BCS) in the previous and the ongoing lactation that was further promoted by feeding to reach the targeted BCS and back fat thickness (BFT) at dry-off (HBCS: >3.75 and >1.4 cm; NBCS: <3.5 and <1.2 cm). Thereafter, both groups were fed identical diets. Blood samples were drawn weekly from 7 weeks a.p. to 12 weeks p.p. to assess the serum concentrations of metabolites and hormones. The HBCS cows had greater BCS, BFT and BW than the NBCS cows throughout the study and lost more than twice as much BFT during the first 7 weeks p.p. compared with NCBS. Milk yield and composition were not different between groups, except that lactose concentrations were greater in NBSC than in HBCS. Feed intake was also greater in NBCS, and NBCS also reached a positive energy balance earlier than HBCS. The greater reduction in body mass in HBCS was accompanied by greater concentrations of non-esterified fatty acids, and β-hydroxybutyrate in serum after calving than in NBCS, indicating increased lipomobilization and ketogenesis. The mean concentrations of insulin across all time-points were greater in HBCS than in NBCS. In both groups, insulin and IGF-1 concentrations were lower p.p than in a.p. Greater free thyroxine (fT4) concentrations and a lower free 3-3′-5-triiodothyronine (fT3)/fT4 ratio were observed in HBCS than in NBCS a.p., whereas p.p. fT3/fT4 ratio followed a reverse pattern. The variables indicative for oxidative status had characteristic time courses; group differences were limited to greater plasma ferric reducing ability values in NBSC. The results demonstrate that the combination of pre-selection according to BCS and differential feeding before dry-off to promote the difference was successful in obtaining cows that differ in the intensity of mobilizing body reserves. The HBCS cows were metabolically challenged due to intense mobilization of body fat, associated with reduced early lactation dry matter intake and compromised antioxidative capacity.

Copyright

Corresponding author

References

Hide All
Allen, MS, Bradford, BJ and Oba, M 2009. The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science 87, 33173334.
Bell, AW 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science 73, 28042819.
Benzie, IF and Strain, JJ 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Analytical Biochemistry 239, 7076.
Bernabucci, U, Ronchi, B, Lacetera, N and Nardone, A 2005. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. Journal of Dairy Science 88, 20172026.
Butler, ST, Marr, AL, Pelton, SH, Radcliff, RP, Lucy, MC and Butler, WR 2003. Insulin restores GH responsiveness during lactation-induced negative energy balance in dairy cattle: effects on expression of IGF-I and GH receptor 1A. Journal of Endocrinology 176, 205217.
Dann, HM, Litherland, NB, Underwood, JP, Bionaz, M, D’Angelo, A, McFadden, JW and Drackley, JK 2006. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. Journal of Dairy Science 89, 35633577.
de Koster, J, Hostens, M, van Eetvelde, M, Hermans, K, Moerman, S, Bogaert, H, Depreester, E, van den Broeck, W and Opsomer, G 2015. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science 98, 45804592.
Dechow, CD, Baumrucker, CR, Bruckmaier, RM and Blum, JW 2017. Blood plasma traits associated with genetic merit for feed utilization in Holstein cows. Journal of Dairy Science 100, 82328238.
Deutsche Landwirtschaftsgesellschaft 2000. Empfehlungen zum Einsatz von Mischrationen bei Milchkühen. DLG-Information 1/2000, DLG-Verlag, Frankfurt/Main, Frankfurt, Germany.
Drackley, JK, Overton, TR and Douglas, GN 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science 84, E100E112.
German Society of Nutrition Physiology (GfE) 2001. Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie. Nr. 8. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder (Recommendations of energy and nutrient supply for dairy cows and breeding cattle). DLG-Verlag, Frankfurt/Main, Frankfurt, Germany.
German Society of Nutrition Physiology (GfE) 2009. New equations for predicting metabolisable energy of compound feeds for cattle. In Proceedings of the Society of Nutrition Physiology, 2009, DLG-Verlag, Frankfurt/Main, Frankfurt, Germany, pp. 143–146.
Hachenberg, S, Weinkauf, C, Hiss, S and Sauerwein, H 2007. Evaluation of classification modes potentially suitable to identify metabolic stress in healthy dairy cows during the peripartal period. Journal of Animal Science 85, 19231932.
Hiss, S, Weinkauf, C, Hachenberg, S and Sauerwein, H 2009. Short communication: relationship between metabolic status and the milk concentrations of haptoglobin and lactoferrin in dairy cows during early lactation. Journal of Dairy Science 92, 44394443.
Kokkonen, T, Taponen, J, Anttila, T, Syrjälä-Qvist, L, Delavaud, C, Chilliard, Y, Tuori, M and Tesfa, AT 2005. Effect of body fatness and glucogenetic supplement on lipid and protein metabolization and plasma leptin in dairy cows. Journal of Dairy Science 88, 11271141.
Krumm, CS, Giesy, SL, Caixeta, LS, Butler, WR, Sauerwein, H, Kim, JW and Boisclair, YR 2017. Effect of hormonal and energy-related factors on plasma adiponectin in transition dairy cows. Journal of Dairy Science 100, 94189427.
Locher, L, Häussler, S, Laubenthal, L, Singh, SP, Winkler, J, Kinoshita, A, Kenéz, Á, Rehage, J, Huber, K, Sauerwein, H and Dänicke, S 2015. Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows. Journal of Dairy Science 98, 10571068.
Mielenz, M, Mielenz, B, Singh, SP, Kopp, C, Heinz, J, Häussler, S and Sauerwein, H 2013. Development, validation, and pilot application of a semiquantitative Western blot analysis and an ELISA for bovine adiponectin. Domestic Animal Endocrinology 44, 121130.
Naumann, C and Bassler, R 2004. Die chemische Untersuchung von Futtermitteln. VDLUFA-Verlag, Darmstadt, Germany.
Nielsen, MO, Madsen, TG and Hedeboe, AM 2001. Regulation of mammary glucose uptake in goats: role of mammary gland supply, insulin, IGF-1 and synthetic capacity. Journal of Dairy research 68, 337349.
Nowroozi-Asl, A, Aarabi, N and Rowshan-Ghasrodashti, A 2016. Ghrelin and its correlation with leptin, energy related metabolites and thyroidal hormones in dairy cows in transitional period. Polish Journal of Veterinary Sciences 19, 197204.
Park, SY, Park, SE, Jung, SW, Jin, HS, Park, IB, Ahn, SV and Lee, S 2017. Free triiodothyronine/free thyroxine ratio rather than thyrotropin is more associated with metabolic parameters in healthy euthyroid adult subjects. Clinical Endocrinology 87, 8796.
Regenhard, P, Nakov, D and Sauerwein, H 2014. Applicability of a spectrophotometric method for assessment of oxidative stress in poultry. Macedonian Veterinary Review 37, 4347.
Reinehr, T 2010. Obesity and thyroid function. Molecular and Cellular Endocrinology 316, 165171.
Rocco, SM and McNamara, JP 2013. Regulation of bovine adipose tissue metabolism during lactation. 7. Metabolism and gene expression as a function of genetic merit and dietary energy intake. Journal of Dairy Science 96, 31083119.
Roche, JR, Friggens, NC, Kay, JK, Fischer, MW, Stafford, KJ and Berry, DP 2009. Invited review: body condition score and its association with dairy cow productivity, health, and welfare. Journal of Animal Science 92, 57695801.
Roche, JR, Lee, JM, Macdonald, KA and Berry, DP 2007. Relationships among body condition score, body weight, and milk production variables in pasture-based dairy cows. Journal of Dairy Science 90, 38023815.
Roche, JR, Macdonald, KA, Schütz, KE, Matthews, LR, Verkerk, GA, Meier, S, Loor, JJ, Rogers, AR, McGowan, J, Morgan, SR, Taukiri, S and Webster, JR 2013. Calving body condition score affects indicators of health in grazing dairy cows. Journal of Dairy Science 96, 58115825.
Roche, JR, Meier, S, Heiser, A, Mitchell, MD, Walker, CG, Crookenden, MA, Riboni, MV, Loor, JJ and Kay, JK 2015. Effects of precalving body condition score and prepartum feeding level on production, reproduction, and health parameters in pasture-based transition dairy cows. Journal of Dairy Science 98, 71647182.
Saremi, B, Al-Dawood, A, Winand, S, Müller, U, Pappritz, J, Soosten, D, von, Rehage, J, Dänicke, S, Häussler, S, Mielenz, M and Sauerwein, H 2012. Bovine haptoglobin as an adipokine: serum concentrations and tissue expression in dairy cows receiving a conjugated linoleic acids supplement throughout lactation. Veterinary Immunology and Immunopathology 146, 201211.
Sauerwein, H and Häußler, S 2016. Endogenous and exogenous factors influencing the concentrations of adiponectin in body fluids and tissues in the bovine. Domestic Animal Endocrinology 56 (Suppl.), S33S43.
Sauerwein, H, Heintges, U, Hennies, M, Selhorst, T and Daxenberger, A 2004. Growth hormone induced alterations of leptin serum concentrations in dairy cows as measured by a novel enzyme immunoassay. Livestock Production Science 87, 189195.
Schulz, K, Frahm, J, Meyer, U, Kersten, S, Reiche, D, Rehage, J and Dänicke, S 2014. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: an animal model to investigate subclinical ketosis. Journal of Dairy Research 81, 257266.
Smith, GL, Friggens, NC, Ashworth, CJ and Chagunda, MGG 2017. Association between body energy content in the dry period and post-calving production disease status in dairy cattle. Animal 11, 15901598.
Templeton, GF 2011. A two-step approach for transforming continuous variable to normal: implications and recommendations for IS research. Communications of the Associations for Information Systems 28, 4158.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed