Skip to main content Accessibility help
×
Home

Article contents

Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia

Published online by Cambridge University Press:  17 August 2018

Y. F. Xue
Affiliation:
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, Jiangsu Province, China
C. Z. Guo
Affiliation:
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, Jiangsu Province, China
F. Hu
Affiliation:
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, Jiangsu Province, China
D. M. Sun
Affiliation:
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, Jiangsu Province, China
J. H. Liu
Affiliation:
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, Jiangsu Province, China
S. Y. Mao
Affiliation:
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, Jiangsu Province, China
Corresponding
E-mail address:
Get access

Abstract

Pathogenesis of pregnancy toxemia (PT) is believed to be associated with the disruption of lipid metabolism. The present study aimed to explore the underlying mechanisms of lipid metabolism disorder in the livers of ewes with PT. In total, 10 pregnant ewes were fed normally (control group) whereas another 10 were subjected to 70% level feed restriction for 15 days to establish a pathological model of PT. Results showed that, as compared with the controls, the levels of blood β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFAs) and cholesterol were greater (P<0.05) and blood glucose level was lower (P<0.05) in PT ewes. The contents of NEFAs, BHBA, cholesterol and triglyceride were higher (P<0.05) and glycerol content was lower (P<0.05) in hepatic tissues of PT ewes than those of the controls. For ewes with PT, excessive fat vacuoles were observed in liver sections stained with hematoxylin–eosin; furthermore, inner structures of hepatocytes including nuclei, mitochondria and endoplasmic reticulum were damaged seriously according to the results of transmission electron microscope. Real-time PCR data showed that compared with the controls, the expression of hepatic genes involved in fatty acid oxidation (FAO) and triglyceride synthesis (TGS) was enhanced (P<0.05) whereas that related to acetyl-CoA metabolism (ACM) was repressed (P<0.05) in PT ewes. Generally, our results showed that negative energy balance altered the expression of genes involved in FAO, ACM and TGS, further caused lipid metabolism disorder in livers, resulting in PT of ewes. Our findings may provide the molecular basis for novel therapeutic strategies against this systemic metabolic disease in sheep.

Type
Research Article
Copyright
© The Animal Consortium 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abba, Y, Abdullah, FFJ, Chung, ELT, Sadiq, MA, Mohammed, K, Osman, AY, Rahmat, NRR, Razak, IA, Lila, MAM, Haron, AW and Saharee, AA 2015. Biochemical and pathological findings of pregnancy toxemia in Saanen doe: a case report. Journal of Advanced Veterinary & Animal Research 2, 236239.10.5455/javar.2015.b78CrossRefGoogle Scholar
Brickner, AE, Pires, JAA, Gressley, TF and Grummer, RR 2009. Effects of abomasal lipid infusion on liver triglyceride accumulation and adipose lipolysis during fatty liver induction in dairy cows. Journal of Dairy Science 92, 49544961.CrossRefGoogle ScholarPubMed
Calpereyra, L, Acostadibarrat, J, Benech, A, Silva, SD, Martín, A and González-Montaía, JR 2012. Ewe pregnancy toxemia. Revista Mexicana De Ciencias Pecuarias 3, 247264.Google Scholar
Calpereyra, L, Benech, A, Gonzálezmontaña, J, Acostadibarrat, J, Da, SS and Martín, A 2015. Changes in the metabolic profile of pregnant ewes to an acute feed restriction in late gestation. New Zealand Veterinary Journal 63, 141146.CrossRefGoogle Scholar
Calpereyra, L, Borteiro, C, Benech, A, Rodas, E, Abreu, MN, Cruz, JC and Gonzálezmontaña, JR 2009. Histological changes of the liver and metabolic correlates in ewes with pregnancy toxemia. Arquivo Brasileiro De Medicina Veterinária E Zootecnia 61, 306312.Google Scholar
Chomczynski, P and Sacchi, N 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle ScholarPubMed
Firat, A and Ozpinar, A 2002. Metabolic profile of pre-pregnancy, pregnancy and early lactation in multiple lambing Sakiz ewes. 1. Changes in levels of plasma glucose, 3- hydroxybutyrate and cortisol levels. Annals of Nutrition & Metabolism 46, 5761.CrossRefGoogle ScholarPubMed
Graham, C and Simmons, NL 2005. Functional organization of the bovine rumen epithelium. American Journal of Physiology Regulatory Integrative & Comparative Physiology 288, R173R181.CrossRefGoogle ScholarPubMed
Grummer, RR 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science 76, 38823896.CrossRefGoogle ScholarPubMed
Ismail, ZA, Almajali, AM, Amireh, F and Alrawashdeh, OF 2008. Metabolic profiles in goat does in late pregnancy with and without subclinical pregnancy toxemia. Veterinary Clinical Pathology 37, 434437.CrossRefGoogle ScholarPubMed
Kleppe, BB, Aiello, RJ, Grummer, RR and Armentano, LE 1988. Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro. Journal of Dairy Science 71, 18131822.10.3168/jds.S0022-0302(88)79750-7CrossRefGoogle ScholarPubMed
Lacetera, N, Bernabucci, U, Ronchi, B and Nardone, A 2001. Effects of subclinical pregnancy toxemia on immune responses in sheep. American Journal of Veterinary Research 62, 10201024.CrossRefGoogle Scholar
Li, P, Li, X, Fu, S, Wu, C, Wang, X, Yu, G, Long, M, Wang, Z and Liu, G 2012. Alterations of fatty acid β-oxidation capability in the liver of ketotic cows. Journal of Dairy Science 95, 17591766.10.3168/jds.2011-4580CrossRefGoogle ScholarPubMed
Li, P, Liu, M, Long, M, Guo, Y, Wang, Z, He, J and Liu, G 2013a. Effect of β-hydroxybutyrate on expression of 3-hydroxy-3-methylglutaryl-CoA synthase in bovine hepatocytes cultured in vitro. Feed Industry 21, 15.Google Scholar
Li, P, Liu, Y, Zhang, Y, Long, M, Guo, Y, Wang, Z, Li, X, Zhang, C, Li, X and He, J 2013b. Effect of non-esterified fatty acids on fatty acid metabolism-related genes in calf hepatocytes cultured in vitro. Cellular Physiology & Biochemistry 32, 15091516.CrossRefGoogle ScholarPubMed
Lima, MS, Pascoal, RA and Stilwell, GT 2012. Glycaemia as a sign of the viability of the foetuses in the last days of gestation in dairy goats with pregnancy toxaemia. Irish veterinary journal 65, 16.CrossRefGoogle ScholarPubMed
Livak, KJ and Schmittgen, TD 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402408.10.1006/meth.2001.1262CrossRefGoogle Scholar
Loor, J, Dann, H, Guretzky, N, Everts, R, Oliveira, R, Green, C, Litherland, N, Rodriguez-Zas, S, Lewin, H and Drackley, J 2006. Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. Physiological Genomics 27, 2941.10.1152/physiolgenomics.00036.2006CrossRefGoogle ScholarPubMed
Loor, J, Everts, R, Bionaz, M, Dann, H, Morin, D, Oliveira, R, Rodriguezzas, S, Drackley, JK and Lewin, HA 2007. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiological Genomics 32, 105116.10.1152/physiolgenomics.00188.2007CrossRefGoogle ScholarPubMed
Louet, JF, Le, MC, Pégorier, JP, Decaux, JF and Girard, J 2001. Regulation of liver carnitine palmitoyltransferase I gene expression by hormones and fatty acids. Biochemical Society Transactions 29, 310316.CrossRefGoogle ScholarPubMed
Marteniuk, JV and Herdt, TH 1988. Pregnancy toxemia and ketosis of ewes and does. Veterinary Clinics of North America Food Animal Practice 4, 307315.CrossRefGoogle Scholar
McGarry, J and Foster, D 1980. Regulation of hepatic fatty acid oxidation and ketone body production. Annual review of biochemistry 49, 395420.CrossRefGoogle ScholarPubMed
Odongo, N, AlZahal, O, Lindinger, M, Duffield, T, Valdes, E, Terrell, S and McBride, B 2006. Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. Journal of Animal Science 84, 447455.10.2527/2006.842447xCrossRefGoogle ScholarPubMed
Rodriguez, JC, Gil-Gómez, G, Hegardt, FG and Haro, D 1994. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. Journal of Biological Chemistry 269, 1876718772.Google ScholarPubMed
Rook, JS and Herdt, TH 2000. Pregnancy toxemia of ewes, does, and beef cows. Veterinary Clinics of North America Food Animal Practice 16, 293317.CrossRefGoogle ScholarPubMed
Royo, T, Ayté, J, Albericio, F, Giralt, E, Haro, D and Hegardt, FG 1991. Diurnal rhythm of rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase. Biochemical Journal 280, 6164.CrossRefGoogle ScholarPubMed
Snook, LC 1939. Fatty infiltration of the liver in pregnant ewes. Journal of Physiology 97, 238249.CrossRefGoogle ScholarPubMed
Wang, M, Enzhong, LI and Wang, G 2014. Histopathological analysis of liver during pregnancy toxemia in small-tailed han sheep. Agricultral Sciences and Technology 3, 470473.Google Scholar
West, HJ 1996. Maternal undernutrition during late pregnancy in sheep. Its relationship to maternal condition, gestation length, hepatic physiology and glucose metabolism. British Journal of Nutrition 75, 593605.CrossRefGoogle ScholarPubMed
Williamson, DH and Whitelaw, E 1978. Physiological aspects of the regulation of ketogenesis. Biochemical Society Symposium 43, 137161.Google Scholar
Xu, C, Liu, G, Li, X, Xia, C, Zhang, H and Wang, Z 2010. Decreased complete oxidation capacity of fatty acid in the liver of ketotic cows. Asian Australasian Journal of Animal Sciences 23, 312317.10.5713/ajas.2010.90416CrossRefGoogle Scholar

Xue et al. supplementary material

Table S1

File 21 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 43
Total number of PDF views: 234 *
View data table for this chart

* Views captured on Cambridge Core between 17th August 2018 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-sztd2 Total loading time: 0.369 Render date: 2021-01-28T03:01:35.254Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *