Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vgwqb Total loading time: 0.294 Render date: 2021-04-12T13:53:37.291Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Factors influencing the priority of access to food and their effects on the carcass traits for Japanese Black (Wagyu) cattle

Published online by Cambridge University Press:  16 July 2015

N. Takanishi
Affiliation:
Laboratory of Animal Husbandry Resources, Graduate School of Agriculture, Division of Applied Biosciences, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
K. Oishi
Affiliation:
Laboratory of Animal Husbandry Resources, Graduate School of Agriculture, Division of Applied Biosciences, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
H. Kumagai
Affiliation:
Laboratory of Animal Husbandry Resources, Graduate School of Agriculture, Division of Applied Biosciences, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
M. Uemura
Affiliation:
Uemura Farm Ltd, Shiraoi-gun, Hokkaido 059-0921, Japan
H. Hirooka
Affiliation:
Laboratory of Animal Husbandry Resources, Graduate School of Agriculture, Division of Applied Biosciences, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
Corresponding
Get access

Abstract

The factors influencing the priority of access to food and the effects of the priority of access to food on their carcass traits were analyzed for Japanese Black (Wagyu) cattle in a semi-intensive fattening production system. The records of 96 clinically healthy steers and heifers were analyzed. The calves at ∼3 to 4 months of age were allocated to pens with four animals per pen; all four animals in the same pen were of the same sex and of similar body size. The ranking of the animals’ priority of access to food (1st, 2nd, 3rd and 4th), which was determined by the farm manager, was used as an indicator of social dominance in the present study. Four models including sire line, maternal grandsire line and the difference in the animals’ birth dates as fixed effects were used to analyze factors influencing the priority of access to food. Ranking was represented by ordinal scores (highest=4, lowest=1) in Model 1, and the binary scores were assigned in Model 2 (highest=1; 2nd, 3rd and 4th=0), Model 3 (1st and 2nd=1; 3rd and 4th=0) and Model 4 (1st, 2nd and 3rd=1; lowest=0). The results showed that the difference in the animals’ birth dates had a significant effect on the establishment of the priority of access to food in Model 3 (P<0.05), suggesting that animals born earlier may become more dominant in the pen. The maternal grandsire line tended to affect the social rank score in Models 2 and 3 (P<0.10). Our results indicated that the maternal grandsire line may affect the temperament of calves through their mothers’ genetic performance and thereby more aggressive calves may be more dominant and have higher priority of access to food. On the other hand, there was a significant effect of the priority of access to food on beef marbling score (BMS; P<0.05), and the priority of access to food also tended to influence the carcass weight (P=0.09). The highest BMS was observed for animals with the first rank of the priority of access to food (P<0.05), and the higher-ranking animals had the tendency to be heavier carcass than the lower-ranking animals. Our findings emphasized the importance of information about the priority of access to food determined by farmers’ own observation on implementing best management practices in small-scaled semi-intensive beef cattle production systems.

Type
Research Article
Information
animal , Volume 9 , Issue 12 , December 2015 , pp. 2017 - 2023
Copyright
© The Animal Consortium 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Asada, M, Hashiyada, Y and Konishi, K 2004. Effect of paternal line of donor on superovulatory response and embryo quality in Japanese Black heifers. Reproduction, Fertility and Development 16, 287287.CrossRefGoogle Scholar
Bolker, BM, Brooks, ME, Clark, CJ, Geange, SW, Poulsen, JR, Stevens, MHH and White, JS 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127135.CrossRefGoogle ScholarPubMed
Bouissou, MF, Boissy, A, Le Neindre, P and Veissier, I 2001. The social behaviour of cattle. In Social Behaviour Farm Animals (ed. LJ Keeling and HW Gonyou), pp. 113145. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Dickson, DP, Barr, GR and Wieckert, DA 1967. Social relationship of dairy cows in a feedlot. Behaviour 29, 195203.CrossRefGoogle Scholar
Dickson, DP, Barr, GR, Johnson, LP and Wieckert, DA 1970. Social dominance and temperament of Holstein cows. Journal of Dairy Science 53, 904907.CrossRefGoogle Scholar
Drews, C 1993. The concept and definition of dominance in animal behaviour. Behaviour 125, 283313.CrossRefGoogle Scholar
Fordyce, G, Fitzpatrick, LA, Cooper, NJ, Doogan, VJ, De Faveri, J and Holroyd, RG 2002. Bull selection and use in northern Australia. V. Social behaviour and management. Animal Reproduction Science 71, 8199.CrossRefGoogle Scholar
Francis, RC 1988. On the relationship between aggression and social dominance. Ethology 78, 223237.CrossRefGoogle Scholar
Freeman, DH Jr 1987. Applied categorical data analysis. Marcel Dekker Inc., New York, USA.Google Scholar
Hafez, ESE and Bouissou, ME 1975. The behaviour of cattle. In The behaviour of domestic animals (ed. ESE Hafez), pp. 247296. The Williams and Wllkins Co., Baltimore, MD.Google Scholar
Hart, BL 1985. The behavior of domestic animals. WH Freeman and Company, New York, USA.Google Scholar
Hirooka, H, Groen, AF and Matsumoto, M 1996. Genetic parameters for growth and carcass traits in Japanese brown cattle estimated from field records. Journal of Animal Science 74, 21122116.CrossRefGoogle ScholarPubMed
Houpt, KA 2011. Aggression and social structure. In Domestic animal behavior for veterinarians and animal scientists (ed. KA Houpt), pp. 416. Wiley-Blackwell, Ames, Iowa, USA.Google Scholar
Huzzey, JM, Weary, DM, Tiau, BYF and von Keyserlingk, MAG 2014. Short communication: automatic detection of social competition using an electronic feeding system. Journal of Dairy Science 97, 29532958.CrossRefGoogle ScholarPubMed
Ikeda, K and Fujii, S 2006. The effects of bull strains and environment in the development of muscular abnormality in Japanese black cattle. Journal of the Japan Veterinary Medical Association 59, 623625. in Japanese.CrossRefGoogle Scholar
Japan Meat Grading Association 1989. Trading standards for carcass and retail cuts of beef and pork. Japan Meat Grading Association, Tokyo, Japan.Google Scholar
Landaeta-Hernández, AJ, Rae, DO, Kaske, M and Archbald, LF 2013. Factors influencing social organization in postpartum Angus cows under confinement. Effect on cow-calf weight change. Livestock Science 152, 4752.CrossRefGoogle Scholar
Landaeta-Hernández, AJ, Chenoweth, PJ, Tran, T, Rae, DO, Randles, R and Chase, CC Jr 2005. Estimating the dominance order in a mixed-breed herd: a practical methodology. Revista Científica FCV-LUZ XV, 148154.Google Scholar
Langbein, J and Puppe, B 2004. Analysing dominance relationships by sociometric methods – a plea for a more standardised and precise approach in farm animals. Applied Animal Behaviour Science 87, 293315.CrossRefGoogle Scholar
Le Neindre, P 1989. Influence of rearing conditions and breed on social behaviour and activity of cattle in novel environments. Applied Animal Behaviour Science 23, 129140.CrossRefGoogle Scholar
MacKay, JRD, Turner, SP, Hyslop, J, Deag, JM and Haskell, MJ 2013. Short-term temperament tests in beef cattle relate to long-term measures of behavior recorded in the home pen. Journal of Animal Science 91, 49174924.CrossRefGoogle ScholarPubMed
Maeno, H, Oishi, K, Mitsuhashi, T, Kumagai, H and Hirooka, H 2014. Prediction of carcass composition and individual carcass cuts of Japanese Black steers. Meat Science 96, 13651370.CrossRefGoogle ScholarPubMed
McPhee, CP, McBride, G and James, JW 1964. Social behaviour of domestic animals. III. Steers in small yards. Animal Production 6, 915.CrossRefGoogle Scholar
Miranda-de la Lama, GC, Sepúlveda, WS, Montaldo, HH, María, GA and Galindo, F 2011. Social strategies associated with identity profiles in dairy goats. Applied Animal Behaviour Science 134, 4855.CrossRefGoogle Scholar
Miranda-de la Lama, GC, Pinal, R, Fuchs, K, Montaldo, H, Ducoing, A and Galindo, F 2013a. Environmental enrichment and social rank affects the fear and stress response to regular handling of dairy goats. Journal of Veterinary Behavior; Clinical Applications and Research 8, 342348.CrossRefGoogle Scholar
Miranda-de la Lama, GC, Pascual-Alonso, M, Guerrero, A, Alberti, P, Alierta, S, Sans, P, Gajan, JP, Villarroel, M, Dalmau, A, Velarde, A, Campo, MM, Galindo, F, Santolaria, MP, Sañudo, C and María, GA 2013b. Influence of social dominance on production, welfare and the quality of meat from beef bulls. Meat Science 94, 432437.CrossRefGoogle ScholarPubMed
Nkrumah, JD, Crews, DH, Basarab, JA, Price, MA, Okine, EK, Wang, Z, Li, C and Moore, SS 2007. Genetic and phenotypic relationships of feeding behavior and temperament with performance, feed efficiency, ultrasound, and carcass merit of beef cattle. Journal of Animal Science 85, 23822390.CrossRefGoogle ScholarPubMed
Partida, JA, Olleta, JL, Campo, MM, Sañudo, C and María, GA 2007. Effect of social dominance on the meat quality of young Friesian bulls. Meat Science 76, 266273.CrossRefGoogle ScholarPubMed
Phillips, CJC and Rind, MI 2002. The effects of social dominance on the production and behavior of grazing dairy cows offered forage supplements. Journal of Dairy Science 85, 5159.CrossRefGoogle ScholarPubMed
SAS 2008. User’s guide: statistics, version 9.2. SAS Institute Inc., Cary, NC, USA.Google Scholar
Solano, J, Galindo, F, Orihuela, A and Galina, CS 2004. The effect of social rank on the physiological response during repeated stressful handling in Zebu cattle (Bos indicus). Physiology & Behavior 82, 679683.CrossRefGoogle Scholar
Stricklin, WR, Graves, HB, Wilson, LL and Singh, RK 1980. Social organization among young beef cattle in confinement. Applied Animal Ethology 6, 211219.CrossRefGoogle Scholar
Val-Laillet, D, de Passillé, AM, Rushen, J and von Keyserlingk, MAG 2008. The concept of social dominance and the social distribution of feeding-related displacements between cows. Applied Animal Behaviour Science 111, 158172.CrossRefGoogle Scholar
Val-Laillet, D, Guesdon, V, Rushen, J, von Keyserlingk, MAG and de Passillé, AM 2009. Allogrooming in cattle: relationships between social preferences, feeding displacements and social dominance. Applied Animal Behaviour Science 116, 141149.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 40
Total number of PDF views: 198 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Factors influencing the priority of access to food and their effects on the carcass traits for Japanese Black (Wagyu) cattle
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Factors influencing the priority of access to food and their effects on the carcass traits for Japanese Black (Wagyu) cattle
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Factors influencing the priority of access to food and their effects on the carcass traits for Japanese Black (Wagyu) cattle
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *