Skip to main content Accessibility help
×
Home

The nutritive value of Acacia saligna and Acacia salicina for goats and sheep

  • A. A. Degen (a1), A. Blanke (a2), K. Becker (a2), M. Kam (a1), R. W. Benjamin (a1) and H. P. S. Makkar (a2)...

Abstract

Acacia saligna and A. salicina phyllodes, harvested in autumn from young and mature trees, were fed as sole diets to goats (20·3 (s.d. 4·8) kg; no. = 16) and sheep (32·6 (s.d. 4·9) kg; no. = 16). Crude protein of phyllodes from mature trees was 111 g/kg dry matter (DM) and from young trees ranged between 121 and 132 g/kg DM. Condensed tannins and ash content were about twice as high in young trees as in old ones and gross energy was higher in old trees than in young ones. DM intakes by goats from both tree species were low: 24·8 and 13·7 g/kg M0·75 per day for mature and young trees, respectively. Corresponding intakes by sheep were 20·4 and 11·5 g/kg M0·75 per day. Metabolizable energy intakes were up to 125 and 99 kj/kg M0·75 per day for goats and sheep, respectively and were higher for phyllodes from mature trees than for young trees. Goats lost up to 219 glday and sheep up to 346 g/day and both species were in negative nitrogen balance. DM, organic matter and energy apparent digestibilities were low for all diets but were generally higher for goats than sheep. It is concluded that neither A. saligna nor A. salicina could be used as a sole food for small ruminants because of low intakes and negative nitrogen balances. This appears to be due to high tannin content.

Copyright

References

Hide All
Armstrong, G. 1992. A necessary evil? The Port Jackson (Acacia saligna) could be a valuable agroforestry tree for disadvantaged landholders. Veld and Flora, March 1992, pp. 1013.
Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edn.Association of Official Analytical Chemists, Washington, DC.
Barry, T. N. 1989. Condensed tannins: their role in ruminant protein and carbohydrate digestion and possible effects upon the rumen ecosystem. In The role of protozoa and fungi in ruminant digestion (ed. Nolan, J. V., Leng, R. A. and Demeyer, D. I.), pp. 153169. Penambul Books, Armidale.
Bas, F. J., Ehle, F. R. and Goodrich, R. D. 1985. Evaluation of pelleted aspen foliage as a ruminant feedstuff. Journal of Animal Science 61:10301036.
Bennison, J. J. and Paterson, R. T. 1993. Use of trees by livestock. 2: Acacia. Natural Resources Institute, Chatham, UK.
Bhattacharya, A. N. 1989. Nutrient utilization of acacia, haloxylon and atriplex species by Najdi sheep. Journal of Range Management 42: 2831.
Blair, G. J. 1989. The diversity and potential value of shrubs and tree fodders. In Shrubs and tree fodders for farm animals (ed. Devendra, C.), pp. 211. IDRC, Ottawa.
Boers, T. M. and Ben-Asher, J. 1982. A review of rainwater harvesting. Agricultural Water Management 5:145158.
Bohra, H. C. 1980. Nutrient utilization of Prosopsis cineraria (Khejri) leaves by desert sheep and goats. Annals of Arid Zone 19: 7381.
Bruins, H. J., Evenari, M. and Nessler, U. 1986. Rainwater-harvesting for food production in arid zones: the challenge of the African famine. Applied Geography 6:1332.
Clausen, T. P., Provenza, F. D., Burritt, E. A., Reichardt, P. B. and Bryant, J. P. 1990. Ecological implications of condensed tannin structure: a case study. Journal of Chemical Ecology 16: 23812392.
Coley, P. D. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70: 238241.
Crompton, H. 1992. Acacia saligna—for dryland fodder and soil stabilization, pp. 92103. Nitrogen Fixing Tree Association, Paia, USA.
Degen, A. A. and Kam, M. 1991. Energy intake, nitrogen balance and water influx of Dorper sheep when consuming different diets. Journal of Arid Environments 21: 363369.
Degen, A. A., Makkar, H. P. S., Becker, K. and Borowy, N. 1995. Acacia saligna as a fodder tree for desert livestock and the interaction of its tannins with fibre fractions. Journal of the Science of Food and Agriculture 68: 6571.
Dement, W. A. and Mooney, H. A. 1974. Seasonal variation in the production of tannins and cyanogenic glucosides in the chaparral shrub, Heteromeles arbutifolia. Oecologia 15: 6576.
Devendra, C. 1989. The use of shrubs and tree fodders by ruminants. In Shrubs and tree fodders for farm animals (ed. Devendra, C.), pp. 4260. IDRC, Ottawa.
Distel, R. A. and Provenza, F. D. 1991. Experience early in life affects voluntary intake of blackbrush in goats. Journal of Chemical Ecology 17:431450.
D'Mello, J. P. F. 1992. Chemical constraints to the use of tropical legumes in animal nutrition. Animal Feed Science and Technology 38: 237261.
Dumancic, D. and Le Houerou, H. N. 1980. Acacia cyanophylla Lindl, as supplementary feed for small stock in Libya. In Browse in Africa (ed. Houerou, H. N. Le), pp. 321325. International Livestock Centre for Africa, Addis Ababa.
Dumancic, D. and Le Houerou, H. N. 1981. Acacia cyanophylla Lindl, as a supplementary feed for small stock in Libya. Journal of Arid Environments 4:161167.
Economides, S. and Hadjidemetrion, D. 1974. The nutritive value of some agricultural by-products. Agricultural Research Institute technical bulletin no. 18, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus.
El-Lakany, M. H. 1987. Use of Australian Acacias in North Africa. In Australian Acacias in developing countries (ed. Turnbull, J. W.), ACIAR proceedings no. 16, Canberra, Australia.
El-Lakany, M. H. and Mahmoud, S. 1991. Agroforestry as a desert farming system; biomass production and feeding quality of Acacia saligna. Advances-Desert-Arid-Land- Technology-Development, Chur, Switzerland 5:423433.
Felker, P. 1981. Uses of tree legumes in semiarid regions. Economic Botany 35: 174186.
Furstenburg, D. and Hoven, W. van. 1994. Condensed tannin as anti-defoliate agent against browsing by giraffe (Giraffa camelopardalis) in the Kruger National Park. Comparative Biochemistry and Physiology 107A: 425431.
Goering, H. K. and Van Soest, P. J. 1970. Forage fibre analysis (apparatus, reagents, procedures, and some applications). Agricultural handbook no. 379. ARS, USDA, Washington DC.
Hanley, T. A., Robbins, C. T., Hagerman, A. E. and McArthur, C. 1992. Predicting digestible protein and digestible dry matter in tannin-containing forages consumed by ruminants. Ecology 73: 573–541.
Kearl, L. C. 1982. Nutrient requirements of ruminants in developing countries. International Feedstuffs Institute, Utah Agricultural Experimental Station, Utah State University, Logan, Utah.
Leroy, E. C., Dann, P. R., Wildin, J. H., Wesley-Smith, R. N. and McGowan, A. A. 1992. Trees and shrubs as sources of fodder in Australia. Agroforestry Systems 20: 117139.
Louca, A., Antoniou, T. and Hatzipanayiotou, M. 1982. Comparative digestibility of feedstuffs by various ruminants, specifically goats. Proceedings of the third international conference on goat production and disease. University of Arizona, Tucson, Arizona.
Lovenstein, H., Berliner, P. R. and Keulen, H. van. 1991. Runoff agroforestry in arid lands. Forest Ecology and Management 45:5970.
Mahyuddin, P., Little, D. A. and Lowry, J. B. 1988. Drying treatment drastically affects feed evaluation and feed quality with certain tropical forage species. Animal Feed Science and Technology 22: 6978.
Makkar, H. P. S. 1993. Antinutritional factors in foods for livestock. In Animal production in developing countries (ed. Gill, M., Owen, E., Pollott, G. E. and Lawrence, T. L. J.), occasional publication, British Society of Animal Production, no. 16, pp. 6985.
Makkar, H. P. S. 1994. Quantification of tannins — a laboratory manual. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria.
Makkar, H. P. S., Dawra, R. K. and Singh, B. L. 1988. Changes in tannin content, polymerization and protein precipitation capacity in oak (Quercus incana) leaves with maturity. Journal of the Science of Food and Agriculture 44: 301307.
Makkar, H. P. S., Dawra, R. K. and Singh, B. L. 1991. Tannin levels in leaves of some oak species at different stages of maturity. Journal of the Science of Food and Agriculture 54: 513519.
Nastis, A. S. and Malecheck, J. A. 1981. Digestion and utilization of nutrients in oak browse by goats. Journal of Animal Science 53:283290.
National Academy of Sciences. 1980. Acacia saligna. In Firewood crops: shrub and tree species for energy production, pp. 100101. National Academy of Sciences, Washington, DC.
Nunez-Hernandez, G., Holechek, J. L., Wallace, J. D., Galyean, M. L., Tembo, A., Valdez, R. and Cardenas, M. 1989. Influence of native shrubs on nutritional status of goats: nitrogen retention Journal of Range Management 42: 228232.
Nunez-Hernandez, G., Wallace, J. D., Holecheck, J. L., Galean, M. L. and Cardenas, M. 1991. Condensed tannins and nutrient utilization by lambs and goats fed low-quality diets. Journal of Animal Science 69:11671177.
Palo, R. T., Sunnerheim, K. and Theander, O. 1985. Seasonal variation of phenols, crude protein and cell wall content of birch (Betula pendula Roth.) in relation to ruminant in vitro digestibility. Oecologia 65: 314318.
Reed, J. L. D., Soller, H. and Woodward, A. 1990. Fodder tree and straw diets for sheep: intake, growth, digestibility and the effects of phenolics on nitrogen utilization. Animal Feed Science and Technology 30: 3950.
Skerman, P. J., Cameron, D. G. and Riveros, F. 1988. Tropical forage legumes. Food and Agriculture Organization, Rome.
Statistical Analysis Systems Institute. 1989. JMP user's guide. Statistical Analysis Systems Institute Inc., Cary, NC.
Topps, J. H. 1992. Potential composition and use of legume shrubs and trees as fodders for livestock in the tropics. Journal of Agricultural Science, Cambridge 118:18.
Wilson, A. D. 1977. The digestibility and voluntary intake of the leaves of trees and shrubs by sheep and goats. Australian Journal of Agricultural Research 28: 501508.

Keywords

The nutritive value of Acacia saligna and Acacia salicina for goats and sheep

  • A. A. Degen (a1), A. Blanke (a2), K. Becker (a2), M. Kam (a1), R. W. Benjamin (a1) and H. P. S. Makkar (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed