Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T21:58:21.419Z Has data issue: false hasContentIssue false

Strength Testing Archaeological Ceramics: A New Perspective

Published online by Cambridge University Press:  20 January 2017

Mark A. Neupert*
Affiliation:
University of Arizona, Laboratory of Traditional Technology, Department of Anthropology, Tucson, AZ 85721

Abstract

The measurement of ceramic strength is an important source of evidence for assessing any pottery technology. However, the adoption of strength testing within comprehensive ceramic analyses in archaeology has been hindered by the absence of a reliable format for testing archaeological specimens. This paper presents results of research undertaken to develop the ball-on-three-ball test, which measures the tensile strength of archaeological, ethnographic, and experimental ceramics in biaxial flexure. Laboratory experiments demonstrate that the test produces reliable and accurate results largely unaffected by the irregularities of sherd-shaped specimens. In an example from the prehistoric Southwest, strength tests are used to investigate technological change in the Cibola White Ware sequence and the role of strength in the formation of archaeological assemblages. It is suggested that the development of a versatile, dependable technique can help to move strength testing out of experimental laboratories and into mainstream ceramic analyses.

Resumen

Resumen

La medida de resistencia de materiales cerámicos es una importante fuente de evidencia para evaluar cualquier tecnología cerámica. Sin embargo, la adopción de pruebas de resistencia dentro de un análisis cerámico comprensivo en arqueología ha sido impedida por la ausencia de un formato confiable para analizar especímenes arqueológicos. Este artículo presenta los rssultados de una investigación realizada para desarrollar la prueba de bola-sobre-tres-bolas, la cual mide la resistencia tensora de cerámica arqueológica, etnográfica y experimental en flexión biáxica. Experimentos de laboratorio demuestran que esta prueba produce resultados confiables y acertados que no son afectados por las irregularidades de especímenes curvos como son los fragmentos cerámicos. En un ejemplo de la prehistoria del suroeste norteamericano, pruebas de resistencia son utilizadas para investigar cambios tecnológicos en la secuencia de la cerámica blanca Cíbola y el rol de la resistencia en la formación de conjuntos arqueológicos. Se sugiere que el desarrollo de una técnica versátil y confiable puede contribuir a movilizar las pruebas de resistencia del campo experimental al campo del análisis cerámico de rutina.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

American Society for Testing and Materials (ASTM) 1978 Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates. ASTM designation ANSI/F394-78. Annual Book of ASTM standards, Pt. 43. American Society for Testing and Materials, Philadelphia.Google Scholar
Arnold, D. E. 1985 Ceramic Theory and Cultural Process. Cambridge University Press, New York.Google Scholar
Bassali, W. A. 1957 The Transverse Flexure of Thin Elastic Plates Supported at Several Points. Proceedings of the Cambridge Philosophical Society 53 : 728743.CrossRefGoogle Scholar
Braun, D. P. 1983 Pots as Tools. In Archaeological Hammers and Theories, edited by Moore, J. and Keene, A., pp. 107134. Academic Press, New York.CrossRefGoogle Scholar
Bronitsky, G. 1986a Compressive Testing of Ceramics : A Southwestern Example. The Kiva 51 : 8598.CrossRefGoogle Scholar
Bronitsky, G. 1986b The Use of Materials Science Techniques in the Study of Pottery Construction and Use. In Advances in Archaeological Method and Theory, vol. 9, edited by Schiffer, M. B., pp. 209276. Academic Press, Orlando.CrossRefGoogle Scholar
Bronitsky, G. 1989 Ceramics and Temper : A Response to Feathers. American Antiquity 54 : 589593.CrossRefGoogle Scholar
Bronitsky, G., and Hamer, R. 1986 Experiments in Ceramic Technology : The Effects of Various Tempering Materials on Impact and Thermal Shock Resistance. American Antiquity 51 : 89101.CrossRefGoogle Scholar
Chao, L., and Shetty, D. K. 1991 Reliability Analysis of Structural Ceramics Subjected to Biaxial Flexure. Journal of the American Ceramic Society 74 : 333344.CrossRefGoogle Scholar
Deal, M. 1983 Pottery Ethnoarchaeology Among the Tzeltal Maya. Unpublished Ph. D. dissertation, Department of Archaeology, Simon Frasier University, Burnaby, British Columbia.Google Scholar
Feathers, J. K. 1989 Effects of Temper on Strength of Ceramics : Response to Bronitsky and Hamer. American Antiquity 54 : 579588.CrossRefGoogle Scholar
Fournier, P. 1989 Surface Treatment and Strength of Low Fired Ceramic Bodies : An Experimental Study. Unpublished Master's thesis, Department of Anthropology, University of Arizona, Tucson.Google Scholar
Franklin, U., and Vitali, V. 1985 The Environmental Stability of Ancient Ceramics. Archaeometry 27 : 315.CrossRefGoogle Scholar
Freeth, S. 1967 A Chemical Study of Some Bronze Age Sherds. Archaeometry 24 : 99116.Google Scholar
Giovan, M. N., and Sines, G. 1979 Biaxial and Uniaxial Data for Statistical Comparison of a Ceramic's Strength. Journal of The American Ceramic Society 62 : 510515.CrossRefGoogle Scholar
Glandus, J. C. 1986 Meaning of the Biaxial Flexure Tests of Discs for Strength Measurements. Journal de Physique 47 : 595600.Google Scholar
Goetze, C. E., and Mills, B. J. 1993a Classification Criteria for Wares and Types. In Ceramic Interpretations, edited by Mills, B. J., Goetze, C. E., and Zedefio, M. N., pp. 2186. Across the Colorado Plateau : Anthropological Studies Along the San Juan Basin and Tranwestern Mainline Expansion Pipeline Routes, vol. 16, Winter, J., general editor. Office of Contract Archeology and the Maxwell Museum of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Goetze, C. E., and Mills, B. J. 1993b Ceramic Chronometry. In Ceramic Interpretations, edited by Mills, B. J., Goezte, C. E., and Zedefio., M. N. pp. 87150. Across the Colorado Plateau : Anthropological Studies Along the San Juan Basin and Tranwestern Mainline Expansion Pipeline Routes, vol. 16, Winter, J., general editor. Office of Contract Archeology and the Maxwell Museum of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Grimshaw, R. W. 1971 The Chemistry and Physics of Clays and Allied Ceramic Materials. 4th ed. Ernst Benn, London.Google Scholar
Hally, D. J. 1986 The Identification of Vessel Function : A Case Study from Northwest Georgia. American Antiquity 51 : 267295.CrossRefGoogle Scholar
Heimann, R., and Maggetti, M. 1981 Experiments of Simulated Burial of Calcareous Terra Sigillata (Mineralogical Change) : Preliminary Results. In Scientific Studies of Ancient Ceramics, edited by Hughes, M., pp. 163177. Occasional Papers No. 19. British Museum, London.Google Scholar
Kirstein, A. F., and Woolley, R. M. 1967 Symmetrical Bending of Thin Circular Elastic Plates on Equally Spaced Point Supports. Journal of Research of the National Bureau of Standards C71 : 110.Google Scholar
Kingery, W. D. 1982 Plausible Inferences from Ceramic Artifacts. In Archaeological Ceramics, edited by Olin, J. S. and Franklin, A. D., pp. 8996. Smithsonian Institution Press, Washington, D. C. Google Scholar
Mabry, J., Skibo, J., Schiffer, M. B., and Kvamme, K. 1988 Use of a Falling-Weight Tester for Assessing Ceramic Impact Strength. American Antiquity 53 : 829839.CrossRefGoogle Scholar
Maggetti, M. 1982 Phase Analysis and Its Significance for Technology and Origins. In Archaeological Ceramics, edited by Olin, J. S. and Franklin, A. D., pp. 121133. Smithsonian Institution Press, Washington, D. C. Google Scholar
Marshall, D. B. 1980 An Improved Biaxial Flexure Test for Ceramics. Ceramic Bulletin 59 : 551553.Google Scholar
Neupert, M. A. 1993 Strength Analysis of the Transwestern Ceramic Assemblage. In Ceramic Interpretations, edited by Mills, B. J., Goetze, C. E., and Zedefio., M. N. pp. 279300. Across the Colorado Plateau : Anthropological Studies Along the San Juan Basin and Tranwestern Mainline Expansion Pipeline Routes, vol. 16, Winter, J., general editor. Office of Contract Archeology and the Maxwell Museum of Anthropology, University of New Mexico, Albuquerque. Office of Contract Archaeology and Maxwell Museum of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Nielsen, A. E. 1991 Trampling the Archaeological Record : An Experimental Study. American Antiquity 56 : 483503.CrossRefGoogle Scholar
O' Brien, P. K. 1990 An Experimental Study of the Effects of Salt Erosion on Pottery. Journal of Archaeological Science 17 : 393101.CrossRefGoogle Scholar
Orton, C. 1993 How Many Pots Make Five?—An Historical Overview of Pottery Quantification. Archaeometry 35 : 168184.CrossRefGoogle Scholar
Rice, P. M. 1984 Change and Conservatism in Pottery Producing Systems. In The Many Dimensions of Pottery : Ceramics in Archaeology and Anthropology, edited by Van der Leeuw, S. and Pritchard, A., pp. 231288. University of Amsterdam, Amsterdam.Google Scholar
Rice, P. M. 1987 Pottery Analysis : A Sourcebook. University of Chicago Press, Chicago.Google Scholar
Ritter, J. E., Jakus, K., Batakis, A., and Bandyopadhyay, N. 1980 Appraisal of Biaxial Strength Testing. Journal of Non-crystalline Solids 38-39 : 419424.CrossRefGoogle Scholar
Schiffer, M. B. 1987 Formation Processes of the Archaeological Record. University of New Mexico Press, Albuquerque.Google Scholar
Schiffer, M. B., and Skibo, J. M. 1987 Theory and Experiment in the Study of Technological Change. Current Anthropology 28 : 595622.CrossRefGoogle Scholar
Schiffer, M. B., and Skibo, J. M. 1989 A Provisional Theory of Ceramic Abrasion. American Anthropologist 91 : 101115.CrossRefGoogle Scholar
Schiffer, M. B., Skibo, J. M., Boelke, T. C., Neupert, M. A., and Aronson, M. 1994 New Perspectives on Experimental Archaeology : Surface Teatments and Thermal Response of the Clay Cooking Pot. American Antiquity 59 : 197217.CrossRefGoogle Scholar
Scholten, H. F. 1993 Evaluation ofMultiaxial Fracture Models for Technological Ceramics. Cip-Gegevens Koniklijke Bibliotheek, Den Haag.Google Scholar
Shepard, A. O. 1965 Ceramics for the Archaeologist. Publication No. 609. Carnegie Institution of Washington, Washington, D. C. Google Scholar
Shetty, D. K., Rosenfield, A., McGuire, P., Bansal, G., and Duckworth, W. 1980 Biaxial Flexure Test for Ceramics. Ceramic Bulletin 59 : 11931197.Google Scholar
Simon, A., and Coghlan, W. 1989 The Use of Indentation Testing to Obtain Precise Hardness Measurements from Prehistoric Pottery. American Antiquity 54 : 107122.CrossRefGoogle Scholar
Skibo, J. M. 1992 Pottery Function : A Use-Alteration Perspective. Plenum, New York.Google Scholar
Skibo, J. M., Schiffer, M. B., and Reid, K. C. 1989 Organic-Tempered Pottery : An Experimental Study American Antiquity 54 : 122146.CrossRefGoogle Scholar
Steponaitis, V. P. 1984 Technological Studies of Prehistoric Pottery From Alabama : Physical Properties and Vessel Function. In Many Dimensions of Pottery : Ceramics in Archaeology and Anthropology, edited by van der Leeuw, S. and Pritchard, A., pp. 79122. University of Amsterdam, Amsterdam.Google Scholar
Vaz Pinto, I., Schiffer, M., Smith, S., and Skibo, J. 1987 Effects of Temper on Ceramic Abrasion Resistance : A Preliminary Investigation. Archeomaterials 1 : 119134.Google Scholar
Wachtman, J. B., Capps, W., and Mandel, J. 1972 Biaxial Flexure Tests of Ceramic Substrates. Journal of Materials, JSMLSA 7 : 188194.Google Scholar
West, S. M. 1992 Temper, Thermal Shock, and Cooking Pots : A Study of Tempering Materials and Their Physical Significance in Prehistoric and Traditional Cooking Pottery. Unpublished Master's thesis, Department of Materials Science and Engineering, University of Arizona, Tucson.Google Scholar
Windes, T. C. 1977 Typology and Technology of Anasazi Ceramics. In Settlement and Subsistence Along the Lower Chaco River : The CGP Survey, edited by Rehrer, C. A., pp. 279358. University of New Mexico Press, Albuquerque.Google Scholar
Zedeño, M. N., Busman, J., Burton, J., and Mills, B. J. 1993 Ceramic Compositional Analyses. In Ceramic Interpretations, edited by Mills, B. J., Goetze, C. E., and Zedefio, M. N., pp. 187234. Across the Colorado Plateau : Anthropological Studies Along the San Juan Basin and Tranwestern Mainline Expansion Pipeline Routes, vol. 16, Winter, J., general editor. Office of Contract Archeology and the Maxwell Museum of Anthropology, University of New Mexico, Albuquerque.Google Scholar