Skip to main content Accessibility help
×
Home

Time-varying copula models for financial time series

  • Rüdiger Kiesel (a1), Magda Mroz (a2) and Ulrich Stadtmüller (a2)

Abstract

We perform an analysis of the potential time inhomogeneity in the dependence between multiple financial time series. To this end, we use the framework of copula theory and tackle the question of whether dependencies in such a case can be assumed constant throughout time or rather have to be modeled in a time-inhomogeneous way. We focus on parametric copula models and suitable inference techniques in the context of a special copula-based multivariate time series model. A recent result due to Chan et al. (2009) is used to derive the joint limiting distribution of local maximum-likelihood estimators on overlapping samples. By restricting the overlap to be fixed, we establish the limiting law of the maximum of the estimator series. Based on the limiting distributions, we develop statistical homogeneity tests, and investigate their local power properties. A Monte Carlo simulation study demonstrates that bootstrapped variance estimates are needed in finite samples. Empirical analyses on real-world financial data finally confirm that time-varying parameters are an exception rather than the rule.

Copyright

Corresponding author

Chair for Energy Trading and Finance, University of Duisburg-Essen, Campus Essen, Universitätsstraße 12, 45141 Essen, Germany. Email address: ruediger.kiesel@uni-due.de
Institut für Zahlentheorie und Wahrscheinlichkeitstheorie, Ulm University, 89069 Ulm, Germany. Email address: magda.mroz@web.de
Institut für Zahlentheorie und Wahrscheinlichkeitstheorie, Ulm University, 89069 Ulm, Germany. Email address: ulrich.stadtmueller@uni-ulm.de

References

Hide All
[1] Almeida, C.,Czado, C. and Manner, H. (2012).Modeling high dimensional time-varying dependence using D-vine SCAR models. Preprint. Available at http://arxiv.org/pdf/1202.2008v1.
[2] Bai, J. and Perron, P. (1998).Estimating and testing linear models with multiple structural changes.Econometrica 66,4778.
[3] Bentkus, V. (2005).A Lyapunov-type bound in ℝ d .Theory Prob. Appl. 49,311323.
[4] Bücher, A.,Kojadinovic, I.,Rohmer, T. and Segers, J. (2014).Detecting changes in cross-sectional dependence in multivariate time series.J. Multivariate Anal. 132,111128.
[5] Burger, M.,Graeber, B. and Schindlmayer, G. (2014).Managing Energy Risk: An Integrated View on Power and Other Energy Markets (Wiley Finance Ser. 425),2nd edn.John Wiley,Chichester.
[6] Chan, N.-H.,Chen, J.,Chen, X.,Fan, Y. and Peng, L. (2009).Statistical inference for multivariate residual copula of GARCH models.Statistica Sinica 19,5370.
[7] Chen, X. and Fan, Y. (2006).Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification.J. Econometrics 135,125154.
[8] Cherubini, U.,Gobbi, F.,Mulinacci, S. and Romagnoli, S. (2010).A copula-based model for spatial and temporal dependence of equity markets. In Copula Theory and Its Applications (Warsaw 2009; Lecture Notes Statist. Proc. 198),Springer,Heidelberg, pp. 257265.
[9] Cherubini, U.,Luciano, E. and Vecchiato, W. (2004).Copula Methods in Finance.John Wiley,Chichester.
[10] Chevallier, J. (2011).Detecting instability in the volatility of carbon prices.Energy Economics 33,99110.
[11] Chevallier, J. (2012).Econometric Analysis of Carbon Markets: The European Union Emissions Trading Scheme and the Clean Development Mechanism.Springer,Dordrecht.
[12] Demko , S.,Moss, W. F. and Smith, P. W. (1984).Decay rates for inverses of band matrices.Math. Comput. 43,491499.
[13] Dias, A. and Embrechts, P. (2009).Testing for structural changes in exchange rates' dependence beyond linear correlation.Europ. J. Finance 15,619637.
[14] Dias, A. and Embrechts, P. (2010).Modeling exchange rate dependence dynamics at different time horizons.J. Internat. Money Finance 29,16871705.
[15] Dobrić, J. and Schmid, F. (2007).A goodness of fit test for copulas based on Rosenblatt's transformation.Comput. Statist. Data Anal. 51,46334642.
[16] Embrechts, P. (2009).Copulas: A personal view. J. Risk Insurance 76,639650.
[17] Fernández, B. and Muriel, N. (2009).Regular variation and related results for the multivariate GARCH(p,q) model with constant conditional correlations.J. Multivariate Anal. 100,15381550.
[18] Fisher, R. A. (1970).Statistical Methods for Research Workers,14th edn.Oliver and Boyd,Edinburgh.
[19] Gaisser, S.,Memmel, C.,Schmidt, R. and Wehn, C. (2009).Time dynamic and hierarchical dependence modelling of an aggregated portfolio of trading books: a multivariate nonparametric approach. Discussion Paper Series 2: Banking and Financial Studies 2009,07.Deutsche Bundesbank,Frankfurt am Main.
[21] Genest, C.,Ghoudi, K. and Rivest, L.-P. (1995).A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.Biometrika 82,543552.
[21] Genest, C.,Rémillard, B. and Beaudoin, D. (2009).Goodness-of-fit tests for copulas: A review and a power study.Insurance Math. Econom. 44,199213.
[22] Giacomini, E.,Härdle, W. and Spokoiny, V. (2009).Inhomogeneous dependence modelling with time-varying copulae.J. Business Econom. Statist. 27,224234.
[23] Hafner, C. M. and Manner, H. (2012).Dynamic stochastic copula models: estimation, inference and applications.J. Appl. Econometrics 27,269295.
[24] Hansen, P. R. and Lunde, A. (2005).A comparison of volatility models: does anything beat a GARCH(1,1)?J. Appl. Econometrics 20,873889.
[25] Härdle, W. K.,Okhrin, O. and Okhrin, Y. (2008).Modeling dependencies with copulae. In Applied Quantitative Finance,2nd edn., eds W. K. Härdle, N. Hautsch and L. Overbeck,Springer,Berlin, pp. 336.
[26] Lehmann, E. L. and Romano, J. P. (2005).Testing Statistical Hypotheses,3rd edn.Springer,New York.
[27] Mai, J.-F. and Scherer, M. (2012).Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications (Ser. Quant. Finance 4).Imperial College Press,London.
[28] Mai, J.-F. and Scherer, M. (2014).Financial Engineering with Copulas Explained.Palgrave Macmillan,Basingstoke.
[29] Mikosch, T. and Starica, C. (2000).Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process.Ann. Statist. 28,14271451.
[30] Mroz, M. (2012).Time-varying copula models for financial time series. Doctoral Thesis, Ulm University.
[31] Nelson, D. B. (1991).Conditional heteroskedasticity in asset returns: a new approach.Econometrica 59,347370.
[32] Patton, A. J. (2012).A review of copula models for economic time series.J. Multivariate Anal. 110,418.
[33] Simes, R. J. (1986).An improved Bonferroni procedure for multiple tests of significance.Biometrika 73,751754.
[34] Stöber, J. and Czado, C. (2012).Detecting regime switches in the dependence structure of high dimensional financial data. Preprint. Available at http://arxiv.org/abs/1202.2009v1.
[35] Teriokhin, A. T.,de Meeǻs, T. and Guégan, J.-F. (2007).On the power of some binomial modifications of the Bonferroni multiple test.J. General Biology 68,332340.
[36] Yaskov, P. (2010).Testing for predictive ability in the presence of structural breaks.Quantile 8,127135 (in Russian).

Keywords

MSC classification

Time-varying copula models for financial time series

  • Rüdiger Kiesel (a1), Magda Mroz (a2) and Ulrich Stadtmüller (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed