Skip to main content Accessibility help

Small-time almost-sure behaviour of extremal processes

  • Ross A. Maller (a1) and Peter C. Schmidli (a1)


An rth-order extremal process Δ(r) = (Δ(r) t ) t≥0 is a continuous-time analogue of the rth partial maximum sequence of a sequence of independent and identically distributed random variables. Studying maxima in continuous time gives rise to the notion of limiting properties of Δ t (r) as t ↓ 0. Here we describe aspects of the small-time behaviour of Δ(r) by characterising its upper and lower classes relative to a nonstochastic nondecreasing function b t > 0 with lim t b t = 0. We are then able to give an integral criterion for the almost sure relative stability of Δ t (r) as t ↓ 0, r = 1, 2, . . ., or, equivalently, as it turns out, for the almost sure relative stability of Δ t (1) as t ↓ 0.


Corresponding author

* Postal address: Research School of Finance, Actuarial Studies and Statistics, The Australian National University, Canberra, ACT 0200, Australia.
*** Email address:
** Email address:


Hide All
[1] Barndorff-Nielsen, O. (1961). On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables. Math. Scand. 9, 383394.
[2] Barndorff-Nielsen, O. (1963). On the limit behaviour of extreme order statistics. Ann. Math. Statist. 34, 9921002.
[3] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation (Encyclopedia Math. Appl. 27). Cambridge University Press.
[4] Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer, New York.
[5] Buchmann, B., Fan, Y. and Maller, R. A. (2016). Distributional representations and dominance of a Lévy process over its maximal jump processes. Bernoulli 22, 23252371.
[6] De Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer, New York.
[7] Gnedenko, B. (1943). Sur la distribution limite du terme maximum d'une séries aléatoire. Ann. Math. 44, 423453.
[8] Godbole, A. P. (1987). On Klass' series criterion for the minimal growth rate of partial maxima. Statist. Prob. Lett. 5, 235238.
[9] Goldie, C. M. and Maller, R. A. (1996). A point-process approach to almost-sure behaviour of record values and order statistics. Adv. Appl. Prob. 28, 426462.
[10] Hall, P. (1979). On the relative stability of large order statistics. Math. Proc. Camb. Phil. Soc. 86, 467475.
[11] Klass, M. J. (1984). The minimal growth rate of partial maxima. Ann. Prob. 12, 380389.
[12] Klass, K. J. (1985). The Robbins-Siegmund series criterion for partial maxima. Ann. Prob. 3, 13691370.
[13] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes and Applications. Springer, Heidelberg.
[14] Maller, R. A. (2015). Strong laws at zero for trimmed Lévy processes. Electron. J. Prob. 20, 24pp.
[15] Resnick, S. I. (1974). Inverses of extremal processes. Adv. Appl. Prob. 6, 392406.
[16] Resnick, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Springer, New York.
[17] Resnick, S. I. and Rubinovitch, M. (1973). The structure of extremal processes. Adv. Appl. Prob. 5, 287307.
[18] Resnick, S. I. and Tomkins, R. J. (1973). Almost sure stability of maxima. J. Appl. Prob. 10, 387401.
[19] Spitzer, F. (1975). Principles of Random Walk. Springer, New York.
[20] Tomkins, R. J. (1986). Regular variation and the stability of maxima. Ann. Prob. 4, 984995.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed