Skip to main content Accessibility help

Series expansions for the all-time maximum of α-stable random walks

  • Clifford Hurvich (a1) and Josh Reed (a1)


We study random walks whose increments are α-stable distributions with shape parameter 1<α<2. Specifically, assuming a mean increment size which is negative, we provide series expansions in terms of the mean increment size for the probability that the all-time maximum of an α-stable random walk is equal to 0 and, in the totally skewed-to-the-left case of skewness parameter β=-1, for the expected value of the all-time maximum of an α-stable random walk. Our series expansions generalize previous results for Gaussian random walks. Key ingredients in our proofs are Spitzer's identity for random walks, the stability property of α-stable random variables, and Zolotarev's integral representation for the cumulative distribution function of an α-stable random variable. We also discuss an application of our results to a problem arising in queueing theory.


Corresponding author

* Postal address: Leonard N. Stern School of Business, New York University, 44 West 4th St., New York, NY 10012, USA.
** Email address:


Hide All
[1] Abramowitz, M. and Stegun, I. A. (1964).Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.U.S. Government Printing Office,Washington, D.C.
[2] Asmussen, S. (2003).Applied Probability and Queues,2nd edn.Springer,New York.
[3] Billingsley, P. (1999).Convergence of Probability Measures,2nd edn.John Wiley,New York.
[4] Billingsley, P. (2012).Probability and Measure.John Wiley,Hoboken, NJ.
[5] Blanchet, J. and Glynn, P. (2006).Complete corrected diffusion approximations for the maximum of a random walk.Ann. Appl. Prob. 16,951983.
[6] Broadie, M.,Glasserman, P. and Kou, S. (1997).A continuity correction for discrete barrier options.Math. Finance 7,325349.
[7] Broadie, M.,Glasserman, P. and Kou, S. G. (1999).Connecting discrete and continuous path-dependent options.Finance Stoch. 3,5582.
[8] Chang, J. T. and Peres, Y. (1997).Ladder heights, Gaussian random walks and the Riemann zeta function.Ann. Prob. 25,787802.
[9] Chung, K. L. (2001).A Course in Probability Theory,3rd edn.Academic Press,San Diego, CA.
[10] Cohen, J. W. and Boxma, O. J. (1983).Boundary Value Problems in Queueing System Analysis.North-Holland,Amsterdam.
[11] Feller, W. (1971).An Introduction to Probability Theory and Its Applications, Vol. II,2nd edn.John Wiley,New York.
[12] Glasserman, P. and Liu, T.-W. (1997).Corrected diffusion approximations for a multistage production-inventory system.Math. Operat. Res. 22,186201.
[13] Gorenflo, R.,Kilbas, A. A.,Mainardi, F. and Rogosin, S. V. (2014).Mittag‒Leffler Functions, Related Topics and Applications.Springer,Heidelberg.
[14] Janssen, A. J. E. M. (2014). Personal communcation.
[15] Janssen, A. J. E. M. and van Leeuwaarden, J. S. H. (2007).Cumulants of the maximum of the Gaussian random walk.Stoch. Process. Appl. 117,19281959.
[16] Janssen, A. J. E. M. and van Leeuwaarden, J. S. H. (2007).On Lerch's transcendent and the Gaussian random walk.Ann. Appl. Prob. 17,421439.
[17] Janssen, A. J. E. M.,van Leeuwaarden, J. S. H. and Zwart, B. (2008).Corrected asymptotics for a multi-server queue in the Halfin‒Whitt regime.Queueing Systems 58,261301.
[18] Janssen, A. J. E. M.,van Leeuwaarden, J. S. H. and Zwart, B. (2011).Refining square-root safety staffing by expanding Erlang C.Operat. Res. 59,15121522.
[19] Jelenković, P.,Mandelbaum, A. and Momčilović, P. (2004).Heavy traffic limits for queues with many deterministic servers.Queueing Systems 47,5369.
[20] Kiefer, J. and Wolfowitz, J. (1955).On the theory of queues with many servers.Trans. Amer. Math. Soc. 78,118.
[21] Kiefer, J. and Wolfowitz, J. (1956).On the characteristics of the general queueing process, with applications to random walk.Ann. Math. Stat. 27,147161.
[22] Kingman, J. F. C. (1965).The heavy traffic approximation in the theory of queues. In Proceedings of the Symposium on Congestion Theory,University of North Carolina Press,Chapel Hill, NC, pp. 137169.
[23] Lang, S. (1999).Complex Analysis,4th edn.Springer,New York.
[24] Lieb, E. H. and Loss, M. (2001).Analysis,2nd edn.American Mathematical Society,Providence, RI.
[25] Nolan, J. P. (1997).Numerical calculation of stable densities and distribution functions.Commun. Statist. Stoch. Models 13,759774.
[26] Owen, W. L. (1973).An estimate for E(|S n |) for variables in the domain of normal attraction of a stable law of index α, 1<α<2.Ann. Prob. 1,10711073.
[27] Riemann, B. (1859).Ueber die anzahl der primzahlen unter einer gegebenen grösse.Ges. Math. Werke Wissenschaftlicher Nachlaß 2,145155.
[28] Samorodnitsky, G. and Taqqu, M. S. (1994).Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance.Chapman & Hall,New York.
[29] Siegmund, D. (1979).Corrected diffusion approximations in certain random walk problems.Adv. Appl. Prob. 11,701719.
[30] Siegmund, D. (1985).Sequential Analysis: Tests and Confidence Intervals.Springer,New York.
[31] Spitzer, F. (1956).A combinatorial lemma and its application to probability theory.Trans. Amer. Math. Soc. 82,323339.
[32] Whitt, W. (2002).Stochastic-Process Limits.Springer,New York.
[33] Wolff, R. W. (1989).Stochastic Modeling and the Theory of Queues.Prentice Hall,Englewood Cliffs, NJ.
[34] Zhang, B.,van Leeuwaarden, J. S. H. and Zwart, B. (2012).Staffing call centers with impatient customers: refinements to many-server asymptotics.Operat. Res. 60,461474.
[35] Zolotarev, V. M. (1986).One-Dimensional Stable Distributions.American Mathematical Society,Providence, RI.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed