Skip to main content Accessibility help

Regenerative processes for Poisson zero polytopes

  • Servet Martínez (a1) and Werner Nagel (a2)


Let (Mt:t>0) be a Markov process of tessellations of ℝ, and let (𝒞t:t>0) be the process of their zero cells (zero polytopes), which has the same distribution as the corresponding process for Poisson hyperplane tessellations. In the present paper we describe the stationary zero cell process (at𝒞at:t∈ℝ),a>1, in terms of some regenerative structure and we show that it is a Bernoulli flow. An important application is to STIT tessellation processes.


Corresponding author

* Postal address: Departamento Ingeniería Matemática and Centro Modelamiento Matemático, Universidad de Chile, UMI 2807 CNRS, Casilla 170-3, Correo 3, Santiago, Chile. Email address:
** Postal address: Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany. Email address:


Hide All
[1]Asmussen, S. (2003).Applied Probability and Queues,2nd edn.Springer,New York.
[2]Ethier, S. N. and Kurtz, T. G. (1986).Markov Processes.John Wiley,New York.
[3]Grimmett, G. R. and Stirzaker, D. R. (1992).Probability and Random Processes: Problems and Solutions.Oxford University Press.
[4]Lindvall, T. (1992).Lectures on the Coupling Method.John Wiley,New York.
[5]Martínez, S. (2014).STIT tessellations are Bernoulli and standard.Ergodic Theory Dynam. Systems 34,876892.
[6]Martínez, S. and Nagel, W. (2012).Ergodic Description of STIT tessellations.Stochastics 84,113134.
[7]Mecke, J.,Nagel, W. and Weiss, V. (2008). A global construction of homogeneous random planar tessellations that are stable under iteration.Stochastics 80,5167.
[8]Molchanov, I. (2005).Theory of Random Sets.Springer,London.
[9]Nagel, W. and Weiss, V. (2003).Limits of sequences of stationary planar tessellations.Adv. Appl. Prob. 35,123138.
[10]Nagel, W. and Weiss, V. (2005).Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration.Adv. Appl. Prob. 37,859883.
[11]Ornstein, D. S. (1974).Ergodic Theory, Randomness and Dynamical Systems.Yale University Press.
[12]Ross, S. M. (1983).Stochastic Processes.John Wiley,New York.
[13]Schneider, R. and Weil, W. (2008).Stochastic and Integral Geometry.Springer,Berlin.


MSC classification

Regenerative processes for Poisson zero polytopes

  • Servet Martínez (a1) and Werner Nagel (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.