[1]
Adler, R. J. (1981). The Geometry of Random Fields. Wiley, New York.

[2]
Baddeley, A. J. and Gill, R. D. (1997). Kaplan–Meier estimators for interpoint distance distributions of spatial point processes. Ann. Statist.
25, 263–292.

[3]
Baddeley, A. J., Kendall, W. S. and van Lieshout, M. N. M. (1996). Quermass-interaction processes. University of Warwick Department of Statistics. Research Report
293, 1996.

[4]
Baddeley, A. J. and van Lieshout, M. N. M. (1992). ICM for object recognition. In Computational Statistics, Vol 2, eds. Dodge, Y. and Whittaker, J.. Physica/Springer, Heidelberg/New York, pp. 271–286.

[5]
Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math.
47, 601–619.

[6]
Baddeley, A. J. and Møller, J. (1989). Nearest-neighbour Markov point processes and random sets. Internat. Statist. Review
57, 89–121.

[7]
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Statist. Soc. B
36, 192–236.

[8]
Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). J. R. Statist. Soc. B
48, 259–302.

[9]
Clifford, P. (1990). Markov random fields in statistics. In Disorder in Physical Systems, eds. Grimmett, G. R. and Welsh, D. J. A.. OUP, Oxford, pp. 19–32.

[10]
Clifford, P. and Nicholls, G. (1994). Comparison of birth-and-death and Metropolis–Hastings Markov chain Monte Carlo for the Strauss process. Manuscript, Department of Statistics, Oxford University.

[11]
Eckhoff, J. (1980). Die Euler-Charakteristik von Vereinigungen konvexer Mengen im oR^{d}
. Abh. Math. Sem. Hamburg
50, 135–146.

[12]
Fiksel, T. (1984). Estimation of parametrized pair potentials of marked and non-marked Gibbsian point processes. Elektronische Informationsverarbeitung und Kybernetika
20, 270–278.

[13]
Fiksel, T. (1988). Estimation of interaction potentials of Gibbsian point processes. Statistics
19, 77–86.

[14]
Gates, D. J. and Westcott, M. (1986). Clustering estimates for spatial point distributions with unstable potentials. Ann. Inst. Statist. Math.
38, 123–135.

[15]
Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Proceedings Seminaire Européen de Statistique, ‘Stochastic Geometry: Likelihood and Computation’, eds. Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman and Hall/CRC, Boca Raton, FL, pp. 79–140.

[16]
Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist.
21, 359–373.

[17]
Grimmett, G. R (1973). A theorem about random fields. Bull. Lond. Math. Soc.
5, 81–84.

[18]
Groemer, H. (1978). On the extension of additive functionals on classes of convex sets. Pacific J. Math.
75, 397–410.

[19]
Hadwiger, H. (1957). Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin.

[20]
Häggström, O.
van Lieshout, M. N. M. and Møller, J. (1996). Characterisation results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Research Report R-96-2040, University of Aalborg, 1996. To appear in *Bernoulli*.

[21]
Hamilton, W. D. (1971). Geometry for the selfish herd. J. Theoret. Biol.
31, 295–311.

[22]
Hammersley, J. M.
Lewis, J. W. E. and Rowlinson, J. S. (1975). Relationships between the multinomial and Poisson models of stochastic processes, and between the canonical and grand canonical ensembles in statistical mechanics, with illustrations and {Monte Carlo} methods for the penetrable sphere model of liquid-vapour equilibrium. Sankhya A
37, 457–491.

[23]
Helterbrand, J. D.
Cressie, N. and Davidson, J. L. (1994). A statistical approach to identifying closed object boundaries in images. Adv. Appl. Prob. (SGSA), 26, 831–854.

[24]
Jensen, J. L. (1993). Asymptotic normality of estimates in spatial point processes. Scand. J. Statist.
20, 97–109.

[25]
Jensen, J. L. and Møller, J. (1991). Pseudolikelihood for exponential family models of spatial point processes. Ann. Appl. Prob.
1, 445–461.

[26]
Kallenberg, O. (1983). Random Measures, 3rd edn, rev. & enl. Academic Press, London.

[27]
Kelly, F. P. and Ripley, B. D. (1976). A note on Strauss's model for clustering. Biometrika
63, 357–360.

[28]
Kendall, W. S. (1990). A spatial Markov property for nearest-neighbour Markov point processes. J. Appl. Prob.
28, 767–778.

[29]
Kendall, W. S. (1998). Perfect simulation for the Area-Interaction Point Process. In Probability Towards the Year 2000, eds. Accardi, L. and Heyde, C. C.. Springer, New York, pp. 218–234.

[30]
Kendall, W. S. (1997). On some weighted Boolean models. In Advances in Theory and Applications of Random Sets, eds. Jeulin, D. and Decker, L.. École des Mines, Fontainebleau, pp. 105–120.

[31]
Kendall, W. S. and Møller, J. (1999) Perfect Metropolis-Hastings simulation of locally stable point processes. Research Report 347, Department of Statistics, University of Warwick, Coventry, UK.

[32]
Klee, V. (1980). On the complexity of d-dimensional Voronoi diagrams. Archiv der Math.
34, 75–80.

[33]
Klein, W. (1982). Potts-model formulation of continuum percolation. Phys. Rev. B
26, 2677–2678.

[34]
van Lieshout, M. N. M. (1994). Stochastic annealing for nearest-neighbour point processes with application to object recognition. Adv. Appl. Prob.
26, 281–300.

[35]
Likos, C. N., Mecke, K. R. and Wagner, H. (1995). Statistical morphology of random interfaces in microemulsions. J. Chem. Phys.
102, 9350–9361.

[36]
McMullen, P. and Schneider, R. (1983). Valuations on convex bodies. In Convexity and its Applications, eds. Gruber, P. and Wills, J. M.. Birkhäuser, Basel, pp. 170–247.

[37]
Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York.

[38]
Mecke, K. R. (1994). Integralgeometrie in der Statistichen Physik. Reine Physik Vol. 25, Harri Deutsch, Frankfurt.

[39]
Mecke, K. R. (1996). A morphological model for complex fluids. J. Phys. Condens. Matter
8, 9663–9667.

[40]
Møller, J., (1994). Discussion contribution. Scand. J. Statist.
21, 346–349.

[41]
Møller, J., (1999). Markov chain Monte Carlo and spatial point processes. In Proceedings Séminaire Européen de Statistique, ‘Stochastic Geometry: Likelihood and Computation’, eds. Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman and Hall/CRC, Boca Raton, FL, pp. 141–172.

[42]
Møller, J. and Waagepetersen, R. (1996). Markov connected component fields. Research Report R-96-2009, University of Aalborg.

[43]
Moyeed, R. A. and Baddeley, A. J. (1995). Stochastic approximation for the MLE of a spatial point process. Scand. J. Statist.
18, 39–50.

[44]
Naimann, D. Q. and Wynn, H. P. (1992). Inclusion-exclusion-Bonferroni identities and inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist.
20, 43–76.

[45]
Naimann, D. Q. and Wynn, H. P. (1993). Independence number, Vapnis-Chervonenkis dimension, and the complexity of families of sets. Discrete Math.
154, 203–216.

[46]
Naimann, D. Q. and Wynn, H. P. (1997). Abstract tubes, improved inclusion-exclusion identities and inequalities, and importance sampling. Ann. Statist.
25, 1954–1983.

[47]
Ogata, Y. and Tanemura, M. (1981). Estimation for interaction potentials of spatial point patterns through the maximum likelihood procedure. Ann. Inst. Statist. Math.
33, 315–338.

[48]
Ogata, Y. and Tanemura, M. (1984). Likelihood analysis of spatial point patterns. J. R. Statist. Soc. B
46, 496–518.

[49]
Ogata, Y. and Tanemura, M. (1989). Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns. Ann. Inst. Statist. Math.
41, 583–600.

[50]
Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley, New York.

[51]
Penttinen, A. (1984). Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method (Jyväskylä Studies in Computer Science, Economics and Statistics 7). University of Jyväskylä, Jyväskylä, Finland.

[52]
Preston, C. J. (1973). Generalised Gibbs states and Markov random fields. Adv. Appl. Prob.
5, 242–261.

[53]
Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and application to statistical mechanics. Random Structure Algorithms
9, 223–252.

[54]
Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. Lond. Math. Soc.
15, 188–192.

[55]
Rowlinson, J. S. (1980). Penetrable sphere models of liquid-vapor equilibrium. Adv. Chem. Phys.
41, 1–57.

[56]
Rowlinson, J. S. (1990). Probability densities for some one-dimensional problems in statistical mechanics. In Disorder in Physical Systems, eds. Grimmett, G. R. and Welsh, D. J. A.. Clarendon, Oxford, pp. 261–276.

[57]
Ruelle, D. (1969). Statistical Mechanics. Wiley, New York.

[58]
Särkkä, A., (1993). Pseudo-likelihood Approach for Pair Potential Estimation of Gibbs Processes (Jyväskylä Studies in Computer Science, Economics and Statistics 22). University of Jyväskylä, Jyväskylä, Finland.

[59]
Schneider, R. (1993). Convex bodies: the Brunn-Minkowski theory. Encyclopedia of mathematics and its applications, vol. 44. Cambridge University Press, Cambridge.

[60]
Sherman, S. (1973). Markov random fields and Gibbs random fields. Israel J. Math.
14, 92–103.

[61]
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and its Applications. Wiley, New York.

[62]
Strauss, D. J. (1975). A model for clustering. Biometrika
63, 467–475.

[63]
Takacs, R. (1983). Estimator for the Pair-potential of a Gibbsian Point Process. Institutsbericht 238, Institut für Mathematik, Johannes Kepler Universität Linz, Austria.

[64]
Takacs, R. (1986). Estimator for the pair potential of a Gibbsian point process. Statist.
17, 429–433.

[65]
Tjelmeland, H. and Holden, L. (1993). Semi-Markov random fields. In Geostatistical Troia'92, Vol. 1, ed. Soares, A.. Kluwer Academic, Amsterdam, pp. 479–492.

[66]
Widom, B. and Rowlinson, J. S. (1970). New model for the study of liquid-vapor phase transitions. J. Chem. Phys.
52, 1670–1684.

[67]
Wilson, R. J. (1972). Introduction to Graph Theory. Oliver and Boyd, Edinburgh.