[1]
Addario-Berry, L., Broutin, N. and Goldschmidt, C. (2010). Critical random graphs: limiting constructions and distributional properties. Electron. J. Prob.
15, 741–775.

[2]
Addario-Berry, L., Broutin, N. and Goldschmidt, C. (2012). The continuum limit of critical random graphs. Prob. Theory Relat. Fields
152, 367–406.

[3]
Aïdékon, E., van der Hofstad, R., Kliem, S. and van Leeuwaarden, J. S. H. (2016). Large deviations for power-law thinned Lévy processes. Stoch. Process. Appl.
126, 1353–1384.

[4]
Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Prob.
25, 812–854.

[5]
Bender, E. A., Canfield, E. R. and McKay, B. D. (1990). The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Structures Algorithms
1, 127–169.

[6]
Bet, G., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2014). Heavy-traffic analysis through uniform acceleration of queues with diminishing populations. Preprint. Available at https://arxiv.org/abs/1412.5329.
[7]
Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2010). Scaling limits for critical inhomogeneous random graphs with finite third moments. Electron. J. Prob.
15, 1682–1702.

[8]
Bollobás, B. (2001). Random Graphs (Camb. Stud. Adv. Math. **73**), 2nd edn. Cambridge University Press.

[9]
Bollobás, B. and Riordan, O. (2012). Asymptotic normality of the size of the giant component via a random walk. J. Combin. Theory B
102, 53–61.

[10]
Dembo, A., Levit, A. and Vadlamani, S. (2017). Component sizes for large quantum Erdős–Rényi graph near criticality. To appear in Ann. Prob.

[11]
Dhara, S., van der Hofstad, R., van Leeuwaarden, J. S. H. and Sen, S. (2017). Critical window for the configuration model: finite third moment degrees. Electron. J. Prob.
22, 16.

[12]
Durrett, R. (2007). Random Graph Dynamics. Cambridge University Press.

[13]
Erdős, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen
6, 290–297.

[14]
Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci A
5, 17–61.

[15]
Erdős, P. and Rényi, A. (1961). On the evolution of random graphs. II. Bull. Inst. Internat. Statist.
38, 343–347.

[16]
Janson, S. (2007). Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas. Prob. Surveys
4, 80–145.

[17]
Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs. John Wiley, New York.

[18]
Joseph, A. (2014). The component sizes of a critical random graph with given degree sequence. Ann. Appl. Prob.
24, 2560–2594.

[19]
Łuczak, T. (1990). On the number of sparse connected graphs. Random Structures Algorithms
1, 171–173.

[20]
Łuczak, T., Pittel, B. and Wierman, J. C. (1994). The structure of a random graph at the point of the phase transition. Trans. Amer. Math. Soc.
341, 721–748.

[21]
Nachmias, A. and Peres, Y. (2010). The critical random graph, with martingales. Israel J. Math.
176, 29–41.

[22]
O'Connell, N. (1998). Some large deviation results for sparse random graphs. Prob. Theory Relat. Fields
110, 277–285.

[23]
Pittel, B. (2001). On the largest component of the random graph at a nearcritical stage. J. Combin. Theory B
82, 237–269.

[24]
Riordan, O. (2012). The phase transition in the configuration model. Combin. Prob. Comput.
21, 265–299.

[25]
Robbins, H. (1955). A remark on Stirling's formula. Amer. Math. Monthly
62, 26–29.

[26]
Roberts, M. and Şengül, B. (2017). Exceptional times of the critical dynamical Erdős–Rényi graph. To appear in Ann. Appl. Prob.

[27]
Steif, J. E. (2009). A survey of dynamical percolation. In Fractal Geometry and Stochastics IV, Birkhäuser, Basel, pp. 145–174.

[28]
Van der Hofstad, R. and Spencer, J. (2006). Counting connected graphs asymptotically. Europ. J. Combinatorics
27, 1294–1320.

[29]
Van der Hofstad, R., Janssen, A. J. E. M. and van Leeuwaarden, J. S. H. (2010). Critical epidemics, random graphs, and Brownian motion with a parabolic drift. Adv. Appl. Prob
42, 1187–1206.

[30]
Van der Hofstad, R., Kager, W. and Müller, T. (2009). A local limit theorem for the critical random graph. Electron. Commun. Prob.
14, 122–131.

[31]
Van der Hofstad, R., Kliem, S. and van Leeuwaarden, J. S. H. (2014). Cluster tails for critical power-law inhomogeneous random graphs. Preprint. Available at https://arxiv.org/abs/1404.1727.
[32]
Van der Hofstad, R., van Leeuwaarden, J. S. H. and Stegehuis, C. (2016). Mesoscopic scales in hierarchical configuration models. Preprint. Available at https://arxiv.org/abs/1612.02668.
[33]
Voblyĭ, V. A. (1987). Wright and Stepanov–Wright coefficients. Mat. Zametki
42, 854–862.

[34]
Wright, E. M. (1980). The number of connected sparsely edged graphs. III. Asymptotic results. J. Graph Theory
4, 393–407.