Skip to main content Accessibility help
×
Home

On the distribution of the breaking strain of a bundle of brittle elastic fibers

  • James U. Gleaton (a1) and James D. Lynch (a2)

Abstract

The maximum-entropy formalism developed by E. T. Jaynes is applied to the breaking strain of a bundle of fibers of various cross-sectional areas. When the bundle is subjected to a tensile load, and it is assumed that Hooke's law applies up to the breaking strain of the fibers, it is proved that the survival strain distribution for a fiber in the bundle is restricted to a certain class consisting of generalizations of the log-logistic distribution. Since Jaynes's formalism is a generalization of statistical thermodynamics, parallels are drawn between concepts in thermodynamics and in the theory of inhomogeneous bundles of fibers. In particular, heat transfer corresponds to damage to the bundle in the form of broken fibers, and the negative reciprocal of the parameter corresponding to thermodynamic temperature is the resistance of the bundle to damage.

Copyright

Corresponding author

Postal address: Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224, USA.
∗∗ Postal address: Center for Reliability and Quality Sciences, Department of Statistics, University of South Carolina, Columbia, SC 29208, USA. Email address: lynch@stat.sc.edu

Footnotes

Hide All

Research partially supported by NSF Grants DMS 9877107 and NSF DMS 0243594.

Footnotes

References

Hide All
Balakrishnan, N. (ed.) (1992). Handbook of the Logistic Distribution. Marcel Dekker, New York.
Boltzmann, L. (1871a). Über das Wärmegleichgewicht zwischen mehratomigen Gasmolekülen. Sitzungsber. Akad. Wiss. Math.-Natur. Klasse Wien 63, 397418.
Boltzmann, L. (1871b). Einige allgemeine Sätze über Wärmegleichgewicht. Sitzungsber. Akad. Wiss. Math.-Natur. Klasse Wien 63, 679711.
Boltzmann, L. (1871c). Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärm etheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft. Sitzungsber. Akad. Wiss. Math.-Natur. Klasse Wien 63, 712732.
Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. John Wiley, New York.
Daniels, H. E. (1945). The statistical theory of the strength of bundles of threads. I. Proc. R. Soc. London A 183, 405435.
Durham, S. D. and Padgett, W. J. (1997). Cumulative damage models for system failure with application to carbon fibers and composites. Technometrics 39, 3444.
Durham, S. D., Lynch, J. D. and Padgett, W. J. (1990). TP_2-orderings and the IFR property with applications. Prob. Eng. Inf. Sci. 4, 7388.
Jaynes, E. T. (1957a). Information theory and statistical mechanics. I. Physical Rev. 106, 620630.
Jaynes, E. T. (1957b). Information theory and statistical mechanics. II. Physical Rev. 108, 171190.
Jaynes, E. T. (1979). Where do we stand on maximum entropy? In Maximum Entropy Formalism (Conf. Mass. Inst. Tech., Cambridge, MA, 1978), MIT Press, Cambridge, MA, pp. 15118.
Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proc. IEEE 70, 939982.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 2, 2nd edn. John Wiley, New York.
Kestin, J. and Dorfman, J. R. (1971). A Course in Statistical Thermodynamics. Academic Press, New York.
Mandelbrot, B. (1962). The role of sufficiency and of estimation in thermodynamics. Ann. Math. Statist. 33, 10211038.
Maxwell, J. C. (1860). Illustrations of the dynamical theory of gases. Phil. Mag. 19, 19–32. Reprinted in: Collected Works, ed. Niven, W. D., Vol. I, London, 1890, pp. 377409.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27, 379421.

Keywords

MSC classification

On the distribution of the breaking strain of a bundle of brittle elastic fibers

  • James U. Gleaton (a1) and James D. Lynch (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed