Skip to main content Accessibility help

Networks and dynamical systems

  • V. A. Malyshev (a1)


A new approach to the problem of classification of (deflected) random walks in or Markovian models for queueing networks with identical customers is introduced. It is based on the analysis of the intrinsic dynamical system associated with the random walk. Earlier results for small dimensions are presented from this novel point of view. We give proofs of new results for higher dimensions related to the existence of a continuous invariant measure for the underlying dynamical system. Two constants are shown to be important: the free energy M < 0 corresponds to ergodicity, the Lyapounov exponent L < 0 defines recurrence. General conjectures, examples, unsolved problems and surprising connections with ergodic theory, classical dynamical systems and their random perturbations are largely presented. A useful notion naturally arises, the so-called scaled random perturbation of a dynamical system.


Corresponding author

Postal address: INRIA—Domaine de Voluceau, Rocquencourt, BP105, 78153 Le Chesnay, France. On leave from Laboratory of Large Random Systems, Moscow State University, Moscow, 119899, Russia.


Hide All
[1] Arnold, L., Oeljeklaus, E. and Pardoux, E. (1986) Almost sure and moment stability for linear Ito equations. In Lyapounov Exponents, Lecture Notes in Mathematics 1186, pp. 129159, Springer-Verlag, Berlin.
[2] Arnold, V. I. (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin.
[3] Baccelli, F. and Makowski, A. M. (1989) Queueing models for systems with synchronization constraints, Proc. IEEE 77, 138161.
[4] Blank, M. L. (1989) Small perturbations of chaotic dynamical systems. Uspehi Mat. Nauk. 44(6), 328.
[5] Borovkov, A. A. (1990) Lyapounov functions and ergodicity of multidimensional Markov chains. Institute of Mathematics of Siberian Ac. of Sci. Preprint No. 19, Novosibirsk.
[6] Botvich, D. D. and Zamyatin, A. (1991) Lyapounov functions for some BCMP and Kelly networks with conservative disciplines. Preprint, Moscow State University.
[7] Bougerol, P. (1986) Oscillation de produits de matrices aléatoires dont l'exposant de Lyapunov est nul. In Lyapunov Exponents, Lecture Notes in Mathematics 1186, 2736.
[8] Chung, K. L. (1967) Markov Chains with Stationary Transition Probabilities. Springer-Verlag, Berlin.
[9] Doob, J. L. (1959) Discrete potential theory and boundaries. J. Math. Mech. 8, 433458.
[10] Fayolle, G. and Iasnogorodski, R. (1979) Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrschlichkeitsth. 47, 325351.
[11] Fayolle, G., Ignatyuk, I. A., Malyshev, V. A. and Menshikov, M. V. (1991) Random walks in two dimensional complexes. QUESTA 9, 269300.
[12] Fayolle, G., Malyshev, V. A. and Menshikov, M. V. (1992) Random walks in a quarter plane with zero drift. 1: ergodicity and null recurrence. Ann. Inst. H. Poincaré 28, 179194.
[13] Fayolle, G., Malyshev, V. A., Menshikov, M. V. and Sidorenko, A. F. (1991) Lyapounov functions for Jackson networks. Rapport de Recherche INRIA, no. 1380.
[14] Feller, W. (1956) Boundaries induced by positive matrices. Trans. Amer. Math. Soc. 83, 1954.
[15] Filonov, Yu. P. (1989) Ergodicity criteria for homogeneous discrete Markov chains. Ukrainian Math. J. 41, 14211422.
[16] Fomin, S. V., Kornfeld, I. P. and Sinai, Ya. G. (1980) Ergodic Theory. Nauka, Moscow.
[17] Foster, F. G. (1953) On stochastic matrices associated with certain queueing processes. Ann. Math. Statist. 24, 355360.
[18] Freidlin, M. I. and Wentzell, A. D. (1984) Random Perturbations of Dynamical Systems. Springer-Verlag, Berlin.
[19] Genis, I. L. and Krylov, N. V. (1973) About exact barriers in the problem with oblique derivative. Siberian Math. J. 14, 3643.
[20] Has'Minski, R. Z. (1967) Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory Prob. Appl. 12, 144147.
[21] Has'Minski, R. Z. (1980) Stochastic Stability of Differential Equations. Sijthoff and Noordhoof, Alphenan den Rijn.
[22] Ignatyuk, I. A. and Malyshev, V. A. (1991) Classification of random walks in ℤ4 + . Selecta Math. Sov. To appear.
[23] Katok, A. and Kifer, Yu. (1986) Random perturbations of transformations of an interval. J. Anal. Math. 47, 193237.
[24] Kelbert, M. and Suhov, Yu. (1988) Mathematical problems of queueing networks. In Probability theory. Mathematical Statistics. Theoretical cybernetics. Itogi nauki i tecniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Naucn. i Techn. Informacii, Moscow , 26, 396.
[25] Kelly, F. P. (1991) Loss networks. Ann. Appl. Prob. 1, 319378.
[26] Kifer, Yu. (1986) Ergodic Theory of Random Transformations. Birkhäuser, Basel.
[27] Kifer, Yu. (1986) General random perturbations of hyperbolic and expanding transformations. J. Anal. Math. 47, 11150.
[28] Kifer, Yu. (1990) Principal eigenvalues, topological pressure and stochastic stability of equilibrium states. Israel J. Math. 70, 147.
[29] Malyshev, V. A. (1970) Random Walks. The Wiener–Hopf Equations in a Quadrant of the Plane. Galois Automorphisms. Moscow State University Press.
[30] Malyshev, V. A. (1972) Classification of two-dimensional random walks and almost linear semimartingales. Dokl. Akad. Nauk USSR 202, 526528.
[31] Malyshev, V. A. and Menshikov, M. V. (1979) Ergodicity, continuity and analyticity of countable Markov chains. Trans. Moscow. Math. Soc. 39, 348.
[32] Malyshev, V. A. and Minlos, R. A. (1985) Gibbs Random Fields. Method of Cluster Expansions. Kluwer, Dordrecht.
[33] Mane, R. (1987) Ergodic Theory and Differentiable Dynamics. Springer-Verlag, Berlin.
[34] Menshikov, M. V. (1974) Ergodicity and transience conditions for random walks in the positive octant of space. Dokl. Akad. Nauk SSSR 217, 755758.
[35] Mertens, J.-F., Samuel-Kahn, E. and Zamir, S. (1978) Necessary and sufficient conditions for recurrence and transience of Markov chains in terms of inequalities. J. Appl. Prob. 15, 848851.
[36] Mikhailov, V. A. (1988) Geometric analysis of stability of Markov chains in ℤ N + and its applications. Prob. Informat. Trans. 24, 6167.
[37] Oseledec, V. I. (1968) Multiplicative ergodic theorem. Characteristic Lyapounov exponents of dynamical systems. Trudy Moscow Math. Soc. 19, 179210.
[38] Reiman, M. I. and Williams, R. J. (1988) A boundary property of semimartingale reflecting brownian motions. Prob. Theory Rel. Fields 77, 8797.
[39] Ruelle, D. (1978) Thermodynamic Formalism. Addison-Wesley, Reading, MA.
[40] Rybko, A. N. and Stolyar, A. L. (1992) On the problem of ergodicity of Markov processes corresponding to the message switching networks. Probl. Informat. Trans. 28, 326.
[41] Sinai, Ya. G. (1972) Gibbs measures in ergodic theory. Uspekhi Mat. Nauk. 27(4), 2164.
[42] Szpankowski, W. (1990) Towards computable stability criteria for some multidimensional stochastic processes. In Stochastic Analysis of Computer and Communication Systems ed. Takagi, H. North-Holland, Amsterdam.
[43] Tweedie, R. L. (1976) Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737771.
[44] Varadhan, S. R. S. and Williams, R. J. (1985) Brownian motion in a wedge with oblique reflection. Commun. Pure Appl. Math. 38, 405443.
[45] Walters, P. (1975) An Introduction to Ergodic Theory. Springer-Verlag, Berlin.
[46] Williams, R. J. (1985) Recurrence classification and invariant measure for reflected brownian motion in a wedge. Ann. Prob. 13, 758778.
[47] Willms, J. (1988) Asymptotic behaviour of iterated piecewise monotone maps. Erg. Theory Dyn. Syst. 8, 111131.
[48] Young, L. S. (1986) Stochastic stability of hyperbolic attractors. Erg. Theory Dyn. Syst. 6, 311319.
[49] Botvich, D. D. and Zamyatin, A. (1992) Ergodic properties of queueing networks with batch arrivals and batch service. Rapport de recherche, INRIA.
[50] Chen, H. and Mabdekbaynm, A. (1991) Discrete flow networks: bottleneck analysis and fluid approximations. Math. Operat. Res. 16, 408446.
[51] Malyshev, V. A. (1992) Stabilization laws for processes with a localized interaction. Rapport de recherche, INRIA.


MSC classification

Networks and dynamical systems

  • V. A. Malyshev (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.