[1]
Arnold, L., Oeljeklaus, E. and Pardoux, E. (1986) Almost sure and moment stability for linear Ito equations. In Lyapounov Exponents, Lecture Notes in Mathematics 1186, pp. 129–159, Springer-Verlag, Berlin.

[2]
Arnold, V. I. (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin.

[3]
Baccelli, F. and Makowski, A. M. (1989) Queueing models for systems with synchronization constraints, Proc.
*IEEE*
77, 138–161.

[4]
Blank, M. L. (1989) Small perturbations of chaotic dynamical systems. Uspehi Mat. Nauk.
44(6), 3–28.

[5]
Borovkov, A. A. (1990) Lyapounov functions and ergodicity of multidimensional Markov chains. .

[6]
Botvich, D. D. and Zamyatin, A. (1991) Lyapounov functions for some BCMP and Kelly networks with conservative disciplines. , Moscow State University.

[7]
Bougerol, P. (1986) Oscillation de produits de matrices aléatoires dont l'exposant de Lyapunov est nul.
*In Lyapunov Exponents, Lecture Notes in Mathematics*
1186, 27–36.

[8]
Chung, K. L. (1967) Markov Chains with Stationary Transition Probabilities. Springer-Verlag, Berlin.

[9]
Doob, J. L. (1959) Discrete potential theory and boundaries.
*J. Math. Mech.*
8, 433–458.

[10]
Fayolle, G. and Iasnogorodski, R. (1979) Two coupled processors: the reduction to a Riemann–Hilbert problem.
*Z. Wahrschlichkeitsth.*
47, 325–351.

[11]
Fayolle, G., Ignatyuk, I. A., Malyshev, V. A. and Menshikov, M. V. (1991) Random walks in two dimensional complexes.
*QUESTA*
9, 269–300.

[12]
Fayolle, G., Malyshev, V. A. and Menshikov, M. V. (1992) Random walks in a quarter plane with zero drift. 1: ergodicity and null recurrence.
*Ann. Inst. H. Poincaré*
28, 179–194.

[13]
Fayolle, G., Malyshev, V. A., Menshikov, M. V. and Sidorenko, A. F. (1991) Lyapounov functions for Jackson networks. .

[14]
Feller, W. (1956) Boundaries induced by positive matrices.
*Trans. Amer. Math. Soc.*
83, 19–54.

[15]
Filonov, Yu. P. (1989) Ergodicity criteria for homogeneous discrete Markov chains.
*Ukrainian Math. J.*
41, 1421–1422.

[16]
Fomin, S. V., Kornfeld, I. P. and Sinai, Ya. G. (1980) Ergodic Theory. Nauka, Moscow.

[17]
Foster, F. G. (1953) On stochastic matrices associated with certain queueing processes.
*Ann. Math. Statist.*
24, 355–360.

[18]
Freidlin, M. I. and Wentzell, A. D. (1984) Random Perturbations of Dynamical Systems. Springer-Verlag, Berlin.

[19]
Genis, I. L. and Krylov, N. V. (1973) About exact barriers in the problem with oblique derivative.
*Siberian Math. J.*
14, 36–43.

[20]
Has'Minski, R. Z. (1967) Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems.
*Theory Prob. Appl.*
12, 144–147.

[21]
Has'Minski, R. Z. (1980) Stochastic Stability of Differential Equations. Sijthoff and Noordhoof, Alphenan den Rijn.

[22]
Ignatyuk, I. A. and Malyshev, V. A. (1991) Classification of random walks in ℤ^{4}
_{+}
. Selecta Math. Sov.
.

[23]
Katok, A. and Kifer, Yu. (1986) Random perturbations of transformations of an interval.
*J. Anal. Math.*
47, 193–237.

[24]
Kelbert, M. and Suhov, Yu. (1988) Mathematical problems of queueing networks. In Probability theory. Mathematical Statistics. Theoretical cybernetics.
*Itogi nauki i tecniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Naucn. i Techn. Informacii, Moscow*
, 26, 3–96.

[25]
Kelly, F. P. (1991) Loss networks.
*Ann. Appl. Prob.*
1, 319–378.

[26]
Kifer, Yu. (1986) Ergodic Theory of Random Transformations. Birkhäuser, Basel.

[27]
Kifer, Yu. (1986) General random perturbations of hyperbolic and expanding transformations.
*J. Anal. Math.*
47, 11–150.

[28]
Kifer, Yu. (1990) Principal eigenvalues, topological pressure and stochastic stability of equilibrium states.
*Israel J. Math.*
70, 1–47.

[29]
Malyshev, V. A. (1970) Random Walks. The Wiener–Hopf Equations in a Quadrant of the Plane. Galois Automorphisms. Moscow State University Press.

[30]
Malyshev, V. A. (1972) Classification of two-dimensional random walks and almost linear semimartingales.
*Dokl. Akad. Nauk USSR*
202, 526–528.

[31]
Malyshev, V. A. and Menshikov, M. V. (1979) Ergodicity, continuity and analyticity of countable Markov chains.
*Trans. Moscow. Math. Soc.*
39, 3–48.

[32]
Malyshev, V. A. and Minlos, R. A. (1985) Gibbs Random Fields. Method of Cluster Expansions. Kluwer, Dordrecht.

[33]
Mane, R. (1987) Ergodic Theory and Differentiable Dynamics. Springer-Verlag, Berlin.

[34]
Menshikov, M. V. (1974) Ergodicity and transience conditions for random walks in the positive octant of space.
*Dokl. Akad. Nauk SSSR*
217, 755–758.

[35]
Mertens, J.-F., Samuel-Kahn, E. and Zamir, S. (1978) Necessary and sufficient conditions for recurrence and transience of Markov chains in terms of inequalities.
*J. Appl. Prob.*
15, 848–851.

[36]
Mikhailov, V. A. (1988) Geometric analysis of stability of Markov chains in ℤ^{
N
}
_{+} and its applications.
*Prob. Informat. Trans.*
24, 61–67.

[37]
Oseledec, V. I. (1968) Multiplicative ergodic theorem. Characteristic Lyapounov exponents of dynamical systems.
*Trudy Moscow Math. Soc.*
19, 179–210.

[38]
Reiman, M. I. and Williams, R. J. (1988) A boundary property of semimartingale reflecting brownian motions.
*Prob. Theory Rel. Fields*
77, 87–97.

[39]
Ruelle, D. (1978) Thermodynamic Formalism. Addison-Wesley, Reading, MA.

[40]
Rybko, A. N. and Stolyar, A. L. (1992) On the problem of ergodicity of Markov processes corresponding to the message switching networks.
*Probl. Informat. Trans.*
28, 3–26.

[41]
Sinai, Ya. G. (1972) Gibbs measures in ergodic theory. Uspekhi Mat. Nauk.
27(4), 21–64.

[42]
Szpankowski, W. (1990) Towards computable stability criteria for some multidimensional stochastic processes. In Stochastic Analysis of Computer and Communication Systems ed. Takagi, H.
North-Holland, Amsterdam.

[43]
Tweedie, R. L. (1976) Criteria for classifying general Markov chains.
*Adv. Appl. Prob.*
8, 737–771.

[44]
Varadhan, S. R. S. and Williams, R. J. (1985) Brownian motion in a wedge with oblique reflection.
*Commun. Pure Appl. Math.*
38, 405–443.

[45]
Walters, P. (1975) An Introduction to Ergodic Theory. Springer-Verlag, Berlin.

[46]
Williams, R. J. (1985) Recurrence classification and invariant measure for reflected brownian motion in a wedge.
*Ann. Prob.*
13, 758–778.

[47]
Willms, J. (1988) Asymptotic behaviour of iterated piecewise monotone maps.
*Erg. Theory Dyn. Syst.*
8, 111–131.

[48]
Young, L. S. (1986) Stochastic stability of hyperbolic attractors.
*Erg. Theory Dyn. Syst.*
6, 311–319.