Skip to main content Accessibility help
×
Home

Large deviations for randomly connected neural networks: I. Spatially extended systems

Abstract

In a series of two papers, we investigate the large deviations and asymptotic behavior of stochastic models of brain neural networks with random interaction coefficients. In this first paper, we take into account the spatial structure of the brain and consider first the presence of interaction delays that depend on the distance between cells and then the Gaussian random interaction amplitude with a mean and variance that depend on the position of the neurons and scale as the inverse of the network size. We show that the empirical measure satisfies a large deviations principle with a good rate function reaching its minimum at a unique spatially extended probability measure. This result implies an averaged convergence of the empirical measure and a propagation of chaos. The limit is characterized through a complex non-Markovian implicit equation in which the network interaction term is replaced by a nonlocal Gaussian process with a mean and covariance that depend on the statistics of the solution over the whole neural field.

Copyright

Corresponding author

* Postal address: Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA. Email address: jtouboul@brandeis.edu

References

Hide All
[1]Amari, S.-I. (1988). Characteristics of random nets of analog neuron-like elements. In Artificial Neural Networks: Theoretical Concepts, IEEE, Los Alamitos, CA, pp. 5569.
[2]Ben Arous, G. and Guionnet, A. (1995). Large deviations for Langevin spin glass dynamics. Prob. Theory Relat. Fields 120, 455509. (Erratum: 103 (1995), 431.)
[3]Ben Arous, G. and Guionnet, A. (1998). Langevin dynamics for Sherrington–Kirkpatrick spin glasses. In Mathematical Aspects of Spin Glasses and Neural Networks, Birkhäuser, Boston, MA, pp. 323353.
[4]Ben Arous, G., Dembo, A. and Guionnet, A. (2001). Aging of spherical spin glasses. Prob. Theory Relat. Fields 120, 167.
[5]Bressloff, P. C. (2010). Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70, 14881521.
[6]Bressloff, P. C. (2012). Spatiotemporal dynamics of continuum neural fields. J. Phys. A 45, 033001.
[7]Bressloff, P. C. et al. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. B 356, 299330.
[8]Buice, M. A. and Chow, C. C. (2013). Beyond mean field theory: statistical field theory for neural networks. J. Statist. Mech. Theory Exp. 2013, P03003.
[9]Buice, M. A. and Chow, C. C. (2013). Dynamic finite size effects in spiking neural networks. PLoS Comput. Biol. 9, e1002872.
[10]Buice, M. A. and Cowan, J. D. (2007). Field-theoretic approach to fluctuation effects in neural networks. Phys. Rev. E 75, 051919.
[11]Buice, M. A., Cowan, J. D. and Chow, C. C. (2010). Systematic fluctuation expansion for neural network activity equations. Neural Comput. 22, 377426.
[12]Cabana, T. and Touboul, J. (2013). Large deviations, dynamics and phase transitions in large stochastic and disordered neural networks. J. Statist. Phys. 153, 211269.
[13]Cabana, T. and Touboul, J. (2018). Large deviations for randomly connected neural networks: II. State-dependent interactions. Adv. Appl. Prob. 50, 9831004.
[14]Cai, D., Tao, L., Shelley, M. and McLaughlin, D. W. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Nat. Acad. Sci. 101, 77577762.
[15]Cessac, B. and Samuelides, M. (2007). From neuron to neural networks dynamics. Europ. Phys. J. Special Topics 142, 788.
[16]Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge University Press.
[17]Dai Pra, P. and den Hollander, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Statist. Phys. 84, 735772.
[18]Daido, H. (1992). Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 10731078.
[19]Daido, H. (2000). Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators. Phys. Rev. E 61, 21452147.
[20]Dauce, E., Moynot, O., Pinaud, O. and Samuelides, M. (2001). Mean-field theory and synchronization in random recurrent neural networks. Neural Process. Lett. 14, 115126.
[21]Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin.
[22]Den Hollander, F. (2000). Large Deviations. American Mathematical Society, Providence, RI.
[23]Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston, MA.
[24]Ermentrout, G. B. and Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biol. Cybernet. 34, 137150.
[25]Faugeras, O. and Maclaurin, J. (2014). Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle. C. R. Math. Acad. Sci. Paris 352, 841846.
[26]Faugeras, O., Touboul, J. and Cessac, B. (2009). A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 10.3389/neuro.10.001.2009.
[27]Funahashi, S., Bruce, C. J. and Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331349.
[28]Guionnet, A. (1997). Averaged and quenched propagation of chaos for spin glass dynamics. Prob. Theory Relat. Fields 109, 183215.
[29]Hermann, G. and Touboul, J. (2012). Heterogeneous connections induce oscillations in large-scale networks. Phys. Rev. Lett. 109, 018702.
[30]Jancke, D., Chavane, F., Naaman, S. and Grinvald, A. (2004). Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423426.
[31]Kilpatrick, Z. P. (2013). Interareal coupling reduces encoding variability in multi-area models of spatial working memory. Frontiers Comput. Neurosci. 7, 82.
[32]Luçon, E. and Stannat, W. (2014). Mean field limit for disordered diffusions with singular interactions. Ann. Appl. Prob. 24, 19461993.
[33]Ly, C. and Tranchina, D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput. 19, 20322092.
[34]Mao, X. (2008). Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester.
[35]Moynot, O. and Samuelides, M. (2002). Large deviations and mean-field theory for asymmetric random recurrent neural networks. Prob. Theory Relat. Fields 123, 4175.
[36]Muller, L., Reynaud, A., Chavane, F. and Destexhe, A. (2014). The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nature Commun. 5, 3675.
[37]Neveu, J. (1968). Processus aléatoires gaussiens. Presses de l'Université de Montréal.
[38]Rangan, A. V., Cai, D. and Tao, L. (2007). Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics. J. Comput. Phys. 221, 781798.
[39]Rangan, A. V., Kovačič, G. and Cai, D. (2008). Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Phys. Rev. E 77, 041915.
[40]Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.
[41]Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of a spin-glass. Phys. Rev. Lett. 35, 17921796.
[42]Sompolinsky, H., Crisanti, A. and Sommers, H. J. (1988). Chaos in random neural networks. Phys. Rev. Lett. 61, 259262.
[43]Stiller, J. C. and Radons, G. (1998). Dynamics of nonlinear oscillators with random interactions. Phys. Rev. E 58, 17891799.
[44]Stiller, J. C. and Radons, G. (2000). Self-averaging of an order parameter in randomly coupled limit-cycle oscillators. Phys. Rev. E 61, 21482149.
[45]Sznitman, A.-S. (1984). Équations de type de Boltzmann, spatialement homogènes. Z. Wahrscheinlichkeitsth. 66, 559592.
[46]Sznitman, A.-S. (1991). Topics in propagation of chaos. In École d'Été de Probabilités de Saint-Flour XIX—1989, Springer, Berlin, pp. 165251.
[47]Touboul, J. (2014). Spatially extended networks with singular multi-scale connectivity patterns. J. Stat. Phys. 156, 546573.
[48]Touboul, J. (2014). Propagation of chaos in neural fields. Ann. Appl. Prob. 24, 12981328.
[49]Wilson, H. R. and Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 124.
[50]Wilson, H. R. and Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybernet. 13, 5580.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed