[1]Amari, S.-I. (1988). Characteristics of random nets of analog neuron-like elements. In Artificial Neural Networks: Theoretical Concepts, IEEE, Los Alamitos, CA, pp. 55–69.

[2]Ben Arous, G. and Guionnet, A. (1995). Large deviations for Langevin spin glass dynamics. Prob. Theory Relat. Fields 120, 455–509. (Erratum: 103 (1995), 431.)

[3]Ben Arous, G. and Guionnet, A. (1998). Langevin dynamics for Sherrington–Kirkpatrick spin glasses. In Mathematical Aspects of Spin Glasses and Neural Networks, Birkhäuser, Boston, MA, pp. 323–353.

[4]Ben Arous, G., Dembo, A. and Guionnet, A. (2001). Aging of spherical spin glasses. Prob. Theory Relat. Fields 120, 1–67.

[5]Bressloff, P. C. (2010). Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70, 1488–1521.

[6]Bressloff, P. C. (2012). Spatiotemporal dynamics of continuum neural fields. J. Phys. A 45, 033001.

[7]Bressloff, P. C. *et al.* (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. B 356, 299–330.

[8]Buice, M. A. and Chow, C. C. (2013). Beyond mean field theory: statistical field theory for neural networks. J. Statist. Mech. Theory Exp. 2013, P03003.

[9]Buice, M. A. and Chow, C. C. (2013). Dynamic finite size effects in spiking neural networks. PLoS Comput. Biol. 9, e1002872.

[10]Buice, M. A. and Cowan, J. D. (2007). Field-theoretic approach to fluctuation effects in neural networks. Phys. Rev. E 75, 051919.

[11]Buice, M. A., Cowan, J. D. and Chow, C. C. (2010). Systematic fluctuation expansion for neural network activity equations. Neural Comput. 22, 377–426.

[12]Cabana, T. and Touboul, J. (2013). Large deviations, dynamics and phase transitions in large stochastic and disordered neural networks. J. Statist. Phys. 153, 211–269.

[13]Cabana, T. and Touboul, J. (2018). Large deviations for randomly connected neural networks: II. State-dependent interactions. Adv. Appl. Prob. 50, 983–1004.

[14]Cai, D., Tao, L., Shelley, M. and McLaughlin, D. W. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Nat. Acad. Sci. 101, 7757–7762.

[15]Cessac, B. and Samuelides, M. (2007). From neuron to neural networks dynamics. Europ. Phys. J. Special Topics 142, 7–88.

[16]Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge University Press.

[17]Dai Pra, P. and den Hollander, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Statist. Phys. 84, 735–772.

[18]Daido, H. (1992). Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 1073–1078.

[19]Daido, H. (2000). Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators. Phys. Rev. E 61, 2145–2147.

[20]Dauce, E., Moynot, O., Pinaud, O. and Samuelides, M. (2001). Mean-field theory and synchronization in random recurrent neural networks. Neural Process. Lett. 14, 115–126.

[21]Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin.

[22]Den Hollander, F. (2000). Large Deviations. American Mathematical Society, Providence, RI.

[23]Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston, MA.

[24]Ermentrout, G. B. and Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biol. Cybernet. 34, 137–150.

[25]Faugeras, O. and Maclaurin, J. (2014). Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle. C. R. Math. Acad. Sci. Paris 352, 841–846.

[26]Faugeras, O., Touboul, J. and Cessac, B. (2009). A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 10.3389/neuro.10.001.2009.

[27]Funahashi, S., Bruce, C. J. and Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349.

[28]Guionnet, A. (1997). Averaged and quenched propagation of chaos for spin glass dynamics. Prob. Theory Relat. Fields 109, 183–215.

[29]Hermann, G. and Touboul, J. (2012). Heterogeneous connections induce oscillations in large-scale networks. Phys. Rev. Lett. 109, 018702.

[30]Jancke, D., Chavane, F., Naaman, S. and Grinvald, A. (2004). Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426.

[31]Kilpatrick, Z. P. (2013). Interareal coupling reduces encoding variability in multi-area models of spatial working memory. Frontiers Comput. Neurosci. 7, 82.

[32]Luçon, E. and Stannat, W. (2014). Mean field limit for disordered diffusions with singular interactions. Ann. Appl. Prob. 24, 1946–1993.

[33]Ly, C. and Tranchina, D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput. 19, 2032–2092.

[34]Mao, X. (2008). Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester.

[35]Moynot, O. and Samuelides, M. (2002). Large deviations and mean-field theory for asymmetric random recurrent neural networks. Prob. Theory Relat. Fields 123, 41–75.

[36]Muller, L., Reynaud, A., Chavane, F. and Destexhe, A. (2014). The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nature Commun. 5, 3675.

[37]Neveu, J. (1968). Processus aléatoires gaussiens. Presses de l'Université de Montréal.

[38]Rangan, A. V., Cai, D. and Tao, L. (2007). Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics. J. Comput. Phys. 221, 781–798.

[39]Rangan, A. V., Kovačič, G. and Cai, D. (2008). Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Phys. Rev. E 77, 041915.

[40]Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.

[41]Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796.

[42]Sompolinsky, H., Crisanti, A. and Sommers, H. J. (1988). Chaos in random neural networks. Phys. Rev. Lett. 61, 259–262.

[43]Stiller, J. C. and Radons, G. (1998). Dynamics of nonlinear oscillators with random interactions. Phys. Rev. E 58, 1789–1799.

[44]Stiller, J. C. and Radons, G. (2000). Self-averaging of an order parameter in randomly coupled limit-cycle oscillators. Phys. Rev. E 61, 2148–2149.

[45]Sznitman, A.-S. (1984). Équations de type de Boltzmann, spatialement homogènes. Z. Wahrscheinlichkeitsth. 66, 559–592.

[46]Sznitman, A.-S. (1991). Topics in propagation of chaos. In École d'Été de Probabilités de Saint-Flour XIX—1989, Springer, Berlin, pp. 165–251.

[47]Touboul, J. (2014). Spatially extended networks with singular multi-scale connectivity patterns. J. Stat. Phys. 156, 546–573.

[48]Touboul, J. (2014). Propagation of chaos in neural fields. Ann. Appl. Prob. 24, 1298–1328.

[49]Wilson, H. R. and Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24.

[50]Wilson, H. R. and Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybernet. 13, 55–80.