Skip to main content Accessibility help
×
Home

Graphs with specified degree distributions, simple epidemics, and local vaccination strategies

Published online by Cambridge University Press:  01 July 2016


Tom Britton
Affiliation:
Stockholm University
Svante Janson
Affiliation:
Uppsala University
Anders Martin-Löf
Affiliation:
Uppsala University

Abstract

Consider a random graph, having a prespecified degree distribution F, but other than that being uniformly distributed, describing the social structure (friendship) in a large community. Suppose that one individual in the community is externally infected by an infectious disease and that the disease has its course by assuming that infected individuals infect their not yet infected friends independently with probability p. For this situation, we determine the values of R 0, the basic reproduction number, and τ0, the asymptotic final size in the case of a major outbreak. Furthermore, we examine some different local vaccination strategies, where individuals are chosen randomly and vaccinated, or friends of the selected individuals are vaccinated, prior to the introduction of the disease. For the studied vaccination strategies, we determine R v , the reproduction number, and τ v , the asymptotic final proportion infected in the case of a major outbreak, after vaccinating a fraction v.


Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2007 

References

Andersson, H. (1999). Epidemic models and social networks. Math. Scientist 24, 128147.Google Scholar
Andersson, H. and Britton, T. (2000). Stochastic Epidemic Models and Their Statistical Analysis (Lecture Notes Statist. 151). Springer, New York.CrossRefGoogle Scholar
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Bollobás, B. (2001). Random Graphs, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122.CrossRefGoogle Scholar
Britton, T., Deijfen, M. and Martin-Löf, A. (2006). Generating simple random graphs with prescribed degree distribution. J. Statist. Phys. 124, 13771397.CrossRefGoogle Scholar
Cohen, R. Havlin, S. and ben-Avrahan, D. (2003). Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901.CrossRefGoogle ScholarPubMed
Gut, A. (2005). Probability: A Graduate Course. Springer, New York.Google Scholar
Janson, S. (2006). The probability that a random multigraph is simple. Available at http://arxiv.org/abs/math/0609802.Google Scholar
Janson, S. (2007). Asymptotic equivalence and contiguity of some random graphs. In preparation.Google Scholar
Janson, S., Łuczak, T. and Ruciński, A. (2000). Random Graphs. John Wiley, New York.CrossRefGoogle Scholar
Janson, S., Knuth, D., Łuczak, T. and Pittel, B. (1994). The birth of the giant component. Random Structures Algorithms 4, 231358.Google Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.CrossRefGoogle Scholar
McKay, B. D. (1985). Asymptotics for symmetric 0–1 matrices with prescribed row sums. Ars Combin. 19, 1525.Google Scholar
Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6, 161179.CrossRefGoogle Scholar
Molloy, M. and Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combin. Prob. Comput. 7, 295305.CrossRefGoogle Scholar
Moore, C. and Newman, M. E. J. (2000). Epidemics and percolation in small world networks. Phys. Rev. E 61, 56785682.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45, 167256.CrossRefGoogle Scholar
Newman, M. E. J., Strogatz, S. H. and Watts, J. (2001). Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118.CrossRefGoogle ScholarPubMed
Scott, J. (2000). Social Network Analysis, A Handbook, 2nd edn. Sage, London.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 289 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-79f79cbf67-xsjvs Total loading time: 0.913 Render date: 2020-12-03T01:23:39.566Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 01:07:13 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Graphs with specified degree distributions, simple epidemics, and local vaccination strategies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Graphs with specified degree distributions, simple epidemics, and local vaccination strategies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Graphs with specified degree distributions, simple epidemics, and local vaccination strategies
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *